244 resultados para Spin Hamiltonian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorine-35 NQR frequency and spin-lattice relaxation time measurements as a function of temperature in the range 77-300 K were carried out on 2-amino-3,5-dichloropyridine. Two NQR signals were observed and were assigned to the two chlorines present in the molecule using the additive model for substituent effects. The temperature dependence of the NQR frequency was analysed in terms of the torsional oscillations of the molecule and the torsional frequencies and their temperature dependence were calculated numerically using a two-mode approximation. The temperature dependence of the NQR spin-lattice relaxation time was found to be mainly due to the torsional oscillations of the molecule, with anharmonicity effects showing up at higher temperatures. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss a recently formulated microscopic theory of the unusual coexistence of spin density waves (SDWs) and charge density waves (CDWs) that has been seen in recent experiments on (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common water ice (ice I-h) is an unusual solid-the oxygen atoms form a periodic structure but the hydrogen atoms are highly disordered due to there being two inequivalent O-H bond lengths'. Pauling showed that the presence of these two bond lengths leads to a macroscopic degeneracy of possible ground states(2,3), such that the system has finite entropy as the temperature tends towards zero. The dynamics associated with this degeneracy are experimentally inaccessible, however, as ice melts and the hydrogen dynamics cannot be studied independently of oxygen motion(4). An analogous system(5) in which this degeneracy can be studied is a magnet with the pyrochlore structure-termed 'spin ice'-where spin orientation plays a similar role to that of the hydrogen position in ice I-h. Here we present specific-heat data for one such system, Dy2Ti2O7, from which we infer a total spin entropy of 0.67Rln2. This is similar to the value, 0.71Rln2, determined for ice I-h, SO confirming the validity of the correspondence. We also find, through application of a magnetic field, behaviour not accessible in water ice-restoration of much of the ground-state entropy and new transitions involving transverse spin degrees of freedom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the salient features of the `Kitaev ladder', a two-legged ladder version of the spin-1/2 Kitaev model on a honeycomb lattice, by mapping it to a one-dimensional fermionic p-wave superconducting system. We examine the connections between spin phases and topologically non-trivial phases of non-interacting fermionic systems, demonstrating the equivalence between the spontaneous breaking of global Z(2) symmetry in spin systems and the existence of isolated Majorana modes. In the Kitaev ladder, we investigate topological properties of the system in different sectors characterized by the presence or absence of a vortex in each plaquette of the ladder. We show that vortex patterns can yield a rich parameter space for tuning into topologically non-trivial phases. We introduce and employ a new topological invariant for explicitly determining the presence of zero energy Majorana modes at the boundaries of such phases. Finally, we discuss dynamic quenching between topologically non-trivial phases in the Kitaev ladder and, in particular, the post-quench dynamics governed by tuning through a quantum critical point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out symmetrized density-matrix renormalization-group calculations to study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople Hamiltonian. We have used the C-2 symmetry, the electron-hole symmetry, and the spin parity of the system in our calculations. We find that there is a crossover in the lowest dipole forbidden two-photon state and the lowest dipole allowed excited state with size of the oligomer. In the long system limit, the two-photon state lies below the lowest dipole allowed excited state. The triplet state lies well below the two-photon state and energetically does not correspond to its description as being made up of two triplets. These results are in agreement with the general trends in linear conjugated polymers. However, unlike in linear polyenes wherein the two-photon state is a localized excitation, we find that in polyacenes, the two-photon excitation is spread out over the system. We have doped the systems with a hole and an electron and have calculated the charge excitation gap. Using the charge gap and the optical gap, we estimate the binding energy of the 1(1)B(-) exciton to be 2.09 eV. We have also studied doubly doped polyacenes and find that the bipolaron in these systems, to be composed of two separated polarons, as indicated by the calculated charge-density profile and charge-charge correlation function. We have studied bond orders in various states in order to get an idea of the excited state geometry of the system. We find that the ground state, the triplet state, the dipole allowed state, and the polaron excitations correspond to lengthening of the rung bonds in the interior of the oligomer while the two-photon excitation corresponds to the rung bond lengths having two maxima in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative study of the spin states and electronic properties of La1-xSrxCoO3 and La2-xSrxLi0.5Co0.5O4 using X-ray absorption near-edge structure spectroscopy at both the O-K and Co-L-2.3 thresholds. In the La2-xSrxLi0.5Co0.5O4 system the CoO6 octahedra are isolated, the holes induced by Sr doping are trapped in the isolated Co(IV)O-6 octahedra, and a low-spin state is found for the Co ions, which does not change upon Sr doping. In the La1-xSrxCoO3 system, the interconnected CoO6 octahedra, with a 180degrees Co-O-Co bond angle, give rise to a transition from low-spin to intermediate-spin state with a ferromagnetic alignment of the Co spins. The double-exchange, ferromagnetic coupling between Co ions mediated by the 180degrees bond angle is responsible for suppressing the low spin-state. We find that the branching ratio of spectral intensities at the L-2 and L-3 thresholds in the Co-L-2.3 X-ray absorption spectra is sensitive to the spin state of the Co ions allowing its direct spectroscopic determination. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron powder diffraction measurements on Ca2FeReO6 reveal that this double perovskite orders ferrimagnetically and shows anomalous lattice parameter behavior below T-C=521 K. Below similar to300 K and similar to160 K we observe that the high-T monoclinic crystal structure separates into two and three monoclinic phases, respectively. A magnetic field suppresses the additional phases at low T in favor of the highest-T phase. These manifestations of the orbital degree of freedom of Re 5d electrons indicate that these electrons are strongly correlated and the title compound is a Mott insulator, with competing spin-orbitally ordered states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO3 (Ln=La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoO3 and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO(3) (Ln = La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoo(3) and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the nature of excited states of long polyacene oligomers within a Pariser-Parr-Pople (PPP) Hamiltonian using the Symmetrized Density Matrix Renormalization Group (SDMRG) technique. We find a crossover between the two-photon state and the lowest dipole allowed excited state as the system size is increased from tetracene to pentacene. The spin-gap is the smallest gap. We also study the equilibrium geome tries in the ground and excited states from bond orders and bond-bond correlation functions. We find that the Peierls instability in the ground state of polyacene is conditional both from energetics and structure factors computed froth correlation functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a temperature-dependent Raman study of the pyrochlore ``dynamic spin-ice'' compound Pr(2)Sn(2)O(7) and compare the results with its non-pyrochlore (monoclinic) counterpart Pr(2)Ti(2)O(7). In addition to phonon modes, we observe two bands associated with electronic Raman scattering involving crystal field transitions in Pr(2)Sn(2)O(7) at similar to 135 and 460 cm(-1) which couple strongly to phonons. Anomalous temperature dependence of phonon frequencies that are observed in Pyrochlore Pr(2)Sn(2)O(7) are absent in monoclinic Pr(2)Ti(2)O(7). This, therefore, confirms that the strong phonon-phonon anharmonic interactions, responsible for the temperature-dependent anomalous behavior of phonons, arise due to the inherent vacant sites in the pyrochlore structure. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the mechanism of spin-torque-driven domain-wall (DW) depinning in cylindrical nanowires of nickel using noise in electrical resistance. We find that the spectral slope of noise is a sensitive probe to the DW kinetics that reveals a creeplike behavior of the DWs at the depinning threshold, and diffusive DW motion at higher spin-torque drive. Different regimes of DW kinetics were characterized by universal kinetic exponents.