395 resultados para Space charge.
Resumo:
Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln(1-x)A(x)MnO(3) (In = rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions.
Resumo:
Charge-order driven magnetic ferroelectricity is shown to occur in several rare earth manganates of the general formula, Ln(1-x)A(x)MnO(3) (In = rare earth, A = alkaline earth). Charge-ordered manganates exhibit dielectric constant anomalies around the charge-ordering or the antiferromagnetic transition temperature. Magnetic fields have a marked effect on the dielectric properties of these compounds, indicating the presence of coupling between the magnetic and electrical order parameters. Magneto-dielectric properties are retained in small particles of the manganates. The observation of magneto-ferroelectricity in these manganates is in accordance with theoretical predictions.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
Variation of switching frequency over the entire operating speed range of an induction motor (M drive is the major problem associated with conventional two-level three-phase hysteresis controller as well as the space phasor based PWM hysteresis controller. This paper describes a simple hysteresis current controller for controlling the switching frequency variation in the two-level PWM inverter fed IM drives for various operating speeds. A novel concept of continuously variable hysteresis boundary of current error space phasor with the varying speed of the IM drive is proposed in the present work. The variable parabolic boundary for the current error space phasor is suggested for the first time in this paper for getting the switching frequency pattern with the hysteresis controller, similar to that of the constant switching frequency voltage-controlled space vector PWM (VC-SVPWM) based inverter fed IM drive. A generalized algorithm is also developed to determine parabolic boundary for controlling the switching frequency variation, for any IM load. Only the adjacent inverter voltage vectors forming a triangular sector, in which tip of the machine voltage vector ties, are switched to keep current error space vector within the parabolic boundary. The controller uses a self-adaptive sector identification logic, which provides smooth transition between the sectors and is capable of taldng the inverter up to six-step mode of operation, if demanded by drive system. The proposed scheme is simulated and experimentally verified on a 3.7 kW IM drive.
Resumo:
We address the problem of distributed space-time coding with reduced decoding complexity for wireless relay network. The transmission protocol follows a two-hop model wherein the source transmits a vector in the first hop and in the second hop the relays transmit a vector, which is a transformation of the received vector by a relay-specific unitary transformation. Design criteria is derived for this system model and codes are proposed that achieve full diversity. For a fixed number of relay nodes, the general system model considered in this paper admits code constructions with lower decoding complexity compared to codes based on some earlier system models.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
Switching frequency variation over a fundamental period is a major problem associated with hysteresis controller based VSI fed IM drives. This paper describes a novel concept of generating parabolic trajectories for current error space phasor for controlling the switching frequency variation in the hysteresis controller based two-level inverter fed IM drives. A generalized algorithm is developed to determine unique set of parabolic trajectories for different speeds of operation for any given IM load. Proposed hysteresis controller provides the switching frequency spectrum of inverter output voltage, similar to that of the constant switching frequency VC-SVPWM based IM drive. The scheme is extensively simulated and experimentally verified on a 3.7 kW IM drive for steady state and transient performance.
Resumo:
Nd0.5Ca0.5MnO3 nanoparticles (average diameter similar to 20 and 40 nm) are synthesized by the polymeric precursor sol-gel method and characterized by various physico-chemical techniques. Quite strikingly, in the 20 nm particles, the charge-ordered (CO) and the antiferromagnetic phases observed in the bulk below 250 K and 160 K, respectively, are completely absent. Instead, a ferromagnetic (FM) transition is observed at 95 K followed by an insulator-to-metal transition at 75 K. The 40 nm particles show a residual CO phase but a transition to the FM state also occurs, at a slightly higher temperature of 110 K.
Resumo:
We report magnetization and magnetoresistance studies of the geometrically frustrated spinel compound LiMn2O4 near its charge ordering temperature. The effect of a 7 T magnetic field is to very slightly shift the transition in the resistivity to lower temperatures resulting in large negative magnetoresistance with significant hysteresis. This hysteresis is not reflected in the magnetization. These observations are compared with what is found in the colossal magnetoresistance and charge ordering perovskite manganese oxides. The manner in which geometric frustration influences the coupling of charge and spin degrees of freedom is examined.
Resumo:
Charge density analysis from both experimental and theoretical points of view on two molecular complexes: one is formed between nicotinamide and salicylic acid, and the other formed between nicotinamide and oxalic acid brings out the quantitative topological features to distinguish a cocrystal from a salt.
Resumo:
Simple ARC designs for germanium (Ge) optics useful in spaceborne electro-optical systems have been generated. It is seen that the designs which are non-quarterwave in nature are efficient in terms of spectral coverage and residual reflection loss. They have been realised experimentally and the resulting ARCs are found to have very good spectral and durability properties.