178 resultados para Solvents.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-walled nanohorns (SWNHs) have been prepared by sub-merged arc discharge of graphite electrodes in liquid nitrogen. The samples were examined by scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Nitrogen and boron doped SWNHs have been prepared by the sub-merged arc discharge method using melamine and elemental boron as precursors. Intensification of Raman D-band and stiffening of G-band has been observed in the doped samples. The electrical resistance of the SWNHs varies in opposite directions with nitrogen and boron doping. Functionalization of SWNHs through amidation has been carried out for solubilizing them in non-polar solvents. Water-soluble SWNHs have been produced by acid treatment and non-covalent functionalization with a coronene salt. SWNHs have been decorated with nanoparticles of Au, Ag and Pt. Interaction of electron donor (tetrathiafulvalene, TTF) and acceptor molecules (tetracyanoethylene, TCNE) with SWNHs has been investigated by Raman spectroscopy. Progressive softening and stiffening of Raman G-band has been observed respectively with increase in the concentration of TTF and TCNE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new dicyanovinyl (DCV) functionalized triarylboranes (Mes(2)B-pi-spacer-DCV, for 1: pi-spacer = C6H4, for 2: pi-spacer = 2,3,5,6-tetramethyl-phenyl) are reported. The molecular structures of 1 and 2 are similar except for the spacer which connects the boryl and DCV units. This small structural perturbation induces drastic changes in the optical properties of 1 and 2. Compound 2 shows weak dual fluorescence emission in nonpolar solvents and a stronger emission in polar solvents. Compound 1 is weakly fluorescent in polar environments but shows an intense single luminescence peak in less polar environments. Compound 1 exhibits a turn-off fluorescence response for both fluoride and cyanide: in contrast, 2 shows a turn on fluorescence response for both anions with different fluorescence signatures. The NMR titration studies reveal that for compound 2, fluoride binds to the boron centre and cyanide binds to the DCV unit. For compound 1, the fluoride ion binds to the boron center, whereas the CN- binds to both the Ar3B and DCV units.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

alpha-Amino gamma-lactams have been synthesized from carbohydrate derived cyclopropanecarboxylates using N-iodosuccinimide (NIS) and NaN3. Cyclopropane ring opening with NIS and NaN3 in different solvents has been studied. Reductive cyclization of the intermediate di-azides leads to the carbohydrate fused alpha-amino gamma-lactam and gamma-lactams. Additionally, the methodology has been successfully extended to the synthesis of a glycopeptide. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanosized fullerene solvates have attracted widespread research attention due to recent interesting discoveries. A particular type of solvate is limited to a fixed number of solvents and designing new solvates within the same family is a fundamental challenge. Here we demonstrate that the hexagonal closed packed (HCP) phase of C-60 solvates, formed with m-xylene, can also be stabilized using toluene. Contrary to the notion on their instability, these can be stabilized from minutes up to months by tuning the occupancy of solvent molecules. Due to high stability, we could record their absorption edge, and measure excitonic life-time, which has not been reported for any C-60 solvate. Despite being solid, absorbance spectrum of the solvates is similar in appearance to that of C-60 in solution. A new absorption band appears at 673 nm. The fluorescence lifetime at 760 nm is similar to 1.2 ns, suggesting an excited state unaffected by solvent-C-60 interaction. Finally, we utilized the unstable set of HCP solvates to exchange with a second solvent by a topotactic exchange mechanism, which rendered near permanent stability to the otherwise few minutes stable solvates. This is also the first example of topotactic exchange in supramolecular crystal, which is widely known in ionic solids. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folding into compact globular structures, with well-defined modules of secondary structure, appears to be a characteristic of long polypeptide chains, with a specific patterning of coded amino acid residues along the length of sequence. Cooperative hydrogen bond driven secondary structure formation and solvent forces, which contribute favorably to the entropy of folding, by promoting compaction of the polymeric chain, have long been discussed as major determinants of the folding process. First principles design approaches, which use non-coded amino acids, employ an alternative structure directing strategy, by using amino acid residues which exhibit a strong conformational bias for specific regions of the Ramachandran map. This overview of ongoing studies in the authors' laboratory, attempts to explore the use of conformationally restricted amino acid residues in the design of peptides with well-defined secondary structures. Short peptides composed of 20 genetically coded amino acids usually exist in solution as an ensemble of equilibrating conformations. Apolar peptide sequences, which are readily soluble in organic solvents like chloroform and methanol, facilitate formation of structures which are predominately driven by intramolecular hydrogen bond formation. The choice of sequences containing residues with a limited range of conformational choices strongly favors formation of local turn structures, stabilized by short range intramolecular hydrogen bonds. Two residue beta-turns can nucleate either helical or hairpin folding, depending on the precise conformation of the turn segment Restriction of the conformational space available to amino acid residues is easily achieved by introduction of an additional alkyl group at the C alpha carbon atom or by side chain backbone cyclization, as in proline. Studies of synthetic sequences incorporating two prototype residues alpha-aminoisobutyric acid (Aib) and D-proline (DPro) illustrate the utility of the strategy in construction of helices and hairpins. Extensions to the design of conformationally switchable sequences and structurally defined hybrid peptides containing backbone homologated residues are also surveyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As-prepared graphene oxide (GO) contains oxidative debris which can be washed using basic solutions. We present the isolation and characterization of these debris. Dynamic light scattering (DLS) is used to monitor the separation of the debris in various solvents in the presence of different protic and aprotic alkylamino bases. The study reveals that the debris are rich in carbonyl functional groups and water is an essential component for separation and removal of the debris from GO under oxidative reaction conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of amphiphilic, cyclic di- and tetrasaccharides, which incorporate a methylene moiety at the inter-glycosidic bond, is reported. The amphiphilic properties of the new cyclic tetrasaccharide host were identified through assessing the solubilities of guests in aqueous and in organic solvents. The glycosidic bond stability of the cyclic tetrasaccharide under aqueous acidic condition was also verified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential ``edge-on'' packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V-1 s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphic cocrystals of urea:4,4'-bipyridine and salicylic acid: 4,4'-bipyridine were obtained by crystallization from different solvents. The urea tape is a rare phenomenon in cocrystals but it is consistent in urea:4,4'-bipyridine polymorphic cocrystals. The polymorph obtained from MeCN has symmetrical N-H...N hydrogen bond distances on either side of the urea tape. However, the other form obtained from MeOH has unsymmetrical N-H...N hydrogen bond lengths. In the polymorphic cocrystals of salicylic acid:4,4'-bipyridine, the basic supramolecular synthon acid-pyridine is the same but the 3D packing is different. Both the polymorphic pairs of cocrystals come under the category of packing polymorphs. All polymorphs were characterized by single-crystal X-ray diffraction (SCXRD), PXRD, DSC, FT-IR and HSM. N-H...N and the acid-pyridine supramolecular synthons were insulated by FT-IR vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular a-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-pi(1)*; S-1 state) and the shorter (1 pi-pi(1)*; S-2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S-2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C-2 nu symmetry constraint on the S-2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling. (C) 2015 AIP Publishing LLC.