223 resultados para Soil core


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a reinforced soil bed system reinforcement layer is usually placed with or without end anchorage. Since soil is weak in tension reinforcement develop tension under the applied load or the displacement of the footing. This tensile force is distributed along the length of the reinforcement subjected to the end condition. The reinforccement tension helps in distributing the load over a wider area, and becomes more effective at large induced settlements. As a result, vertical componenent of tensile force generated becomes effective in reducing applied load. However, very few studies to quantify the tensile force along the reinforcement have been reported in the literature. In this paper an attempt has been made to obtain the true nature of tensile force distribution along the reinforcement. For a reinforced soil bed below a strip footing this paper brings out induced tensile force distribution along the reinforcement at different load levels and for different types of reinforcements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In -situ soils in gee-material spectrum might arise due to sedimentation or could be non-sedimentary residual formations. The inherent nature and diversity of geological processes involved in the soil formation stage itself are responsible for a wide variability in the in-situ state of the soil. In this paper the possibility of analyses to arrive at engineering parameters of residual soils with varied degrees of residual or acquired cementation by the use of physical and in-situ parameters normally determined in routine investigations, are examined. An Intrinsic State Line,(ISL), with reference to an intrinsic state parameter (e/e(L)) and its variation with effective stress for reconstituted clays has been developed for residual tropical soils of non-sedimentary origin. In relation to the Intrinsic State Line (ISL), the undisturbed state, e, the potential parameter, e(L), along with the overburden pressure data has been analyzed to identify the dominance of cementation or stress history or both in controlling the compressibility and strength behaviour of natural residual soil. The location of yield stress point in relation to the ISL, pre-, and post- yield stress, compression indices along the e- log sigma(v) path provide a simple means to the analysis of the compressibility characteristics of cemented soils for analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical uplift resistance of a group of two horizontal coaxial strip anchors, embedded in a general c-phi soil (where c is the unit cohesion and phi is the soil friction angle), has been determined by using the lower bound finite element limit analysis. The variation of uplift factors F-c and F-gamma, due to the components of soil cohesion and unit weight, respectively, with changes in depth (H)/width (B) has been established for different values of vertical spacing (S)/B. As compared to a single isolated anchor, the group of two anchors provides a significantly greater magnitude of F-c for phi <= 20 degrees and with H/B >= 3. The magnitude of F-c becomes almost maximum when S/B is kept closer to 0.5H/B. On the other hand, with the same H/B, as compared to a single anchor, hardly any increase in F-gamma occurs for a group of two anchors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a study on effect of different energization on removal of NOX in diesel engine exhaust has been presented. Here we made a detailed qualitative study of effect of pulsed/ac/dc voltage energizations on the NOX treatment of using conventional wire-cylinder reactor configuration. It was observed that amongst different energizations, pulse energization exhibits maximum NOX removal efficiency when compared to ac and dc energizations. For a given specific energy density, wire-cylinder reactor filled with BaTiO3 pellet gives higher NOX removal efficiency when compared to reactor without pellets under both pulse and ac energization. The dc energization does not have much impact on the removal processes. The paper further discusses the individual energization cases in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the Lamb wave type guided wave propagation in honeycomb core sandwich structures. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented that proves the potential of Lamb wave type guided wave for detection of damage in sandwich structures. A sandwich panel is fabricated with planar dimension of 600 mm x 600 mm, having a core thickness of 7 mm, cell size of 5 mm and 0.1 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense a frequency band limited guided wave with a central frequency. A linear phased array of piezoelectric patch actuators is used to achieve higher signal strength and directivity. Group velocity dispersion curves and corresponding frequency response of sensed signal are obtained experimentally. Linearity between the excitation signal amplitude and the corresponding sensed signal amplitude is found for certain range of parameters. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Indentation and low velocity impact induced damages of increasing diameter covering several honeycomb cells are created. Crushing of honeycomb core with rupture of face sheet is observed while introducing the damage. The damages are then detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. Monotonic changes in the sensor signal amplitude due to increase in the damage size has been established successfully. With this approach it is possible to locate and monitor the damages with the help of phased array and by tracking the wave packets scattered from the damages. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of soil parameters by inverse modeling using observations on either surface soil moisture or crop variables has been successfully attempted in many studies, but difficulties to estimate root zone properties arise when heterogeneous layered soils are considered. The objective of this study was to explore the potential of combining observations on surface soil moisture and crop variables - leaf area index (LAI) and above-ground biomass for estimating soil parameters (water holding capacity and soil depth) in a two-layered soil system using inversion of the crop model STICS. This was performed using GLUE method on a synthetic data set on varying soil types and on a data set from a field experiment carried out in two maize plots in South India. The main results were (i) combination of surface soil moisture and above-ground biomass provided consistently good estimates with small uncertainity of soil properties for the two soil layers, for a wide range of soil paramater values, both in the synthetic and the field experiment, (ii) above-ground biomass was found to give relatively better estimates and lower uncertainty than LAI when combined with surface soil moisture, especially for estimation of soil depth, (iii) surface soil moisture data, either alone or combined with crop variables, provided a very good estimate of the water holding capacity of the upper soil layer with very small uncertainty whereas using the surface soil moisture alone gave very poor estimates of the soil properties of the deeper layer, and (iv) using crop variables alone (else above-ground biomass or LAI) provided reasonable estimates of the deeper layer properties depending on the soil type but provided poor estimates of the first layer properties. The robustness of combining observations of the surface soil moisture and the above-ground biomass for estimating two layer soil properties, which was demonstrated using both synthetic and field experiments in this study, needs now to be tested for a broader range of climatic conditions and crop types, to assess its potential for spatial applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvated metal atom dispersion (SMAD) method has been used for the synthesis of colloids of metal nanoparticles. It is a top-down approach involving condensation of metal atoms in low temperature solvent matrices in a SMAD reactor maintained at 77 K. Warming of the matrix results in a slurry of metal atoms that interact with one another to form particles that grow in size. The organic solvent solvates the particles and acts as a weak capping agent to halt/slow down the growth process to a certain extent. This as-prepared colloid consists of metal nanoparticles that are quite polydisperse. In a process termed as digestive ripening, addition of a capping agent to the as-prepared colloid which is polydisperse renders it highly monodisperse either under ambient or thermal conditions. In this, as yet not well-understood process, smaller particles grow and the larger ones diminish in size until the system attains uniformity in size and a dynamic equilibrium is established. Using the SMAD method in combination with digestive ripening process, highly monodisperse metal, core-shell, alloy, and composite nanoparticles have been synthesized. This article is a review of our contributions together with some literature reports on this methodology to realize various nanostructured materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the effect of frequency of base shaking on the dynamic response of unreinforced and reinforced soil slopes through a series of shaking table tests. Slopes were constructed using clayey sand and geogrids were used for reinforcing the slopes. Two different slope angles 45 degrees and 60 degrees were used in tests and the quantity and location of reinforcement is varied in different tests. Acceleration of shaking is kept constant as 0.3 g in all the tests to maximize the response and the frequency of shaking was 2 Hz, 5 Hz and 7 Hz in different tests. The slope is instrumented with ultrasonic displacement sensors and accelerometers at different elevations. The response of different slopes is compared in terms of the deformation of the slope and acceleration amplifications measured at different elevations. It is observed that the displacements at all elevations increased with increase in frequency for all slopes, whereas the effect of frequency on acceleration amplifications is not significant for reinforced slopes. Results showed that the acceleration and displacement response is not increasing proportionately with the increase in the frequency, suggesting that the role of frequency in the seismic response is very important. Reinforced slopes showed lesser displacements compared to unreinforced slopes at all frequency levels. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study directed toward the bioactive natural product garsubellin A, an expedient route to the bicyclo 3.3.1]nonan-9-one bearing tricyclic core, with a bridgehead anchored tetrahydrofuran ring, is delineated. The approach emanating from commercially available dimedone involved a DIBAL-H mediated retro aldol/re-aldol cyclization cascade and a PCC mediated oxidative cyclization as the key steps. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.