183 resultados para Rhodium dimer
Resumo:
Nucleotide biosynthesis plays a key role in cell survival and cell proliferation. Thymidylate kinase is an enzyme that catalyses the conversion of dTMP to dTDP using ATP-Mg2+ as a phosphoryl-donor group. This enzyme is present at the junction of the de novo and salvage pathways; thus, any inhibitor designed against it will result in cell death. This highlights the importance of this enzyme as a drug target. Thymidylate kinase from the extremely thermophilic organism Thermus thermophilus HB8 has been expressed, purified and crystallized using the microbatch method. The crystals diffracted to a resolution of 1.83 angstrom and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 39.50, b = 80.29, c = 122.55 angstrom. Preliminary studies revealed the presence of a dimer in the asymmetric unit with a Matthews coefficient (V-M) of 2.18 angstrom(3) Da(-1).
Resumo:
In the present study, four new multicomponent forms of lamotrigine (LTG) with selected carboxylic acids, viz. acetic acid, propionic acid, sorbic acid, and glutaric acid, have been identified. Preliminary solid-state characterization was done by differential scanning calorimetry/thermogravimetric, infrared, and powder X-ray diffraction techniques. X-ray single-crystal structure analysis confirmed the proton transfer, stoichiometry, and the molecular composition, revealing all of these to be a new salt/salt-cocrystal/salt monosolvate monohydrate of LTG. All four compounds exhibited both the aminopyridine dimer of LTG (motif 4) and cation-anion dimers between protonated LTG and the carboxylate anion in their crystal structures. Further, these new crystal forms were subjected to solubility studies in water, powder dissolution studies in 0.1 N HCl, and stability studies under humid conditions in comparison with pure LTG base. The solubility of these compounds in water is significantly enhanced compared with that of pure base, which is attributed to the type of packing motifs present in their crystal structures as well as to the lowering of the pH by the acidic coformers. Solid residues of all forms remaining after solubility and dissolution experiments were also assessed for any transformation in water and acidic medium.
Resumo:
Domain swapping is an interesting feature of some oligomeric proteins in which each protomer of the oligomer provides an identical surface for exclusive interaction with a segment or domain belonging to another protomer. Here we report results of mutagenesis experiments on the structure of C-terminal helix swapped dimer of a stationary phase survival protein from Salmonella typhimurium (StSurE). Wild type StSurE is a dimer in which a large helical segment at the C-terminus and a tetramerization loop comprising two beta strands are swapped between the protomers. Key residues in StSurE that might promote C-terminal helix swapping were identified by sequence and structural comparisons. Three mutants in which the helix swapping is likely to be avoided were constructed and expressed in E. coli. Three-dimensional X-ray crystal structures of the mutants H234A and D230A/H234A could be determined at 2.1 angstrom and 2.35 angstrom resolutions, respectively. Contrary to expectations, helix swapping was mostly retained in both the mutants. The loss of the crucial D230 OD2- H234 NE2 hydrogen bond (2.89 angstrom in the wild type structure) in the hinge region was compensated by new inter and intra-chain interactions. However, the two fold molecular symmetry was lost and there were large conformational changes throughout the polypeptide. In spite of these changes, the dimeric structure and an approximate tetrameric organization were retained, probably due to the interactions involving the tetramerization loop. Mutants were mostly functionally inactive, highlighting the importance of precise inter-subunit interactions for the symmetry and function of StSurE.
Resumo:
A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.
Resumo:
Guanidine derived six-membered C,N] palladacycles of the types (C,N)Pd(mu-OC(O)R)](2) (1a-d), (C,N)Pd(mu-Br)](2) (2a,b), cis-(C,N)PdBr(L)] (3a-d, 4, and 5), and ring contracted guanidine derived five-membered C,N] palladacycle, (C,N)PdBr(C NXy)] (6) were prepared in high yield following the established methods with a view aimed at understanding the influence of the substituents on the aryl rings of the guanidine upon the solid state structure and solution behaviour of palladacycles. Palladacycles were characterised by microanalytical, IR, NMR and mass spectral data. The molecular structures of 1a, 1c, 2a, 2b, 3a, 3c, 3d, and 4-6 were determined by single crystal X-ray diffraction data. Palladacycles 1a and 1c were shown to exist as a dimer in transoid in-in conformation in the solid state but as a mixture of a dimer in major proportion and a monomer (kappa(2)-O,O'-OAc) in solution as deduced from H-1 NMR data. Palladacycles 2a and 2b were shown to exist as a dimer in transoid conformation in the solid state but the former was shown to exist as a mixture of a dimer and presumably a trimer in solution as revealed by a variable temperature H-1 NMR data in conjunction with ESI-MS data. The cis configuration around the palladium atom in 3a, 3c, and 3d was ascribed to steric influence of the aryl moiety of =NAr unit and that in 4-6 was ascribed to antisymbiosis. The solution behaviour of 3d was studied by a variable concentration (VC) H-1 NMR data.
Resumo:
IR spectroscopy has been widely employed to distinguish between different crystal forms such as polymorphs, clathrates, hydrates and co-crystals. IR has been used to monitor co-crystal formation and single synthon detection. In this work, we have developed a strategy to identify multiple supramolecular synthons in polymorphs and co-crystals with this technique. The identification of multiple synthons in co-crystals with IR is difficult for several reasons. In this paper, a four step method involving well assigned IR spectral markers that correspond to bonds in a synthon is used. IR spectra of three forms of the co-crystal system, 4-hydroxybenzoic acid: 4,4'-bipyridine (2 : 1), show clear differences that may be attributed to differences in the synthon combinations existing in the forms (synthon polymorphism). These differences were picked out from the three IR spectra and the bands analysed and assigned to synthons. Our method first identifies IR marker bands corresponding to (covalent) bonds in known/model crystals and then the markers are mapped in known co-crystals having single synthons. Thereafter, the IR markers are queried in known co-crystals with multiple synthons. Finally they are queried in unknown co-crystals with multiple synthons. In the last part of the study, the N-H stretching absorptions of primary amides that crystallize with the amide dimers linked in a ladder like chain show two specific absorptions which are used as marker absorptions and all variations of this band structure have been used to provide details on the environment around the dimer. The extended dimer can accordingly be easily distinguished from the isolated dimer.
Resumo:
Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.
Resumo:
The primary structure and function of nucleoside diphosphate kinase (NDK), a substrate non-specific enzyme involved in the maintenance of nucleotide pools is also implicated to play pivotal roles in many other cellular processes. NDK is conserved from bacteria to human and forms a homotetramer or hexamer to exhibit its biological activity. However, the nature of the functional oligomeric form of the enzyme differs among different organisms. The functional form of NDKs from many bacterial systems, including that of the human pathogen, Mycobacterium tuberculosis (MtuNDK), is a hexamer, although some bacterial NDKs are tetrameric in nature. The present study addresses the oligomeric property of MsmNDK and how a dimer, the basic subunit of a functional hexamer, is stabilized by hydrogen bonds and hydrophobic interactions. Homology modeling was generated using the three-dimensional structure of MtuNDK as a template; the residues interacting at the monomer-monomer interface of MsmNDK were mapped. Using recombinant enzymes of wild type, catalytically inactive mutant, and monomer-monomer interactive mutants of MsmNDK, the stability of the dimer was verified under heat, SDS, low pH, and methanol. The predicted residues (Gln17, Ser24 and Glu27) were engaged in dimer formation, however the mutated proteins retained the ATPase and GTPase activity even after introducing single (MsmNDK- Q17A, MsmNDK-E27A, and MsmNDK-E27Q) and double (MsmNDK-E27A/Q17A) mutation. However, the monomer monomer interaction could be abolished using methanol, indicating the stabilization of the monomer-monomer interaction by hydrophobic interaction.
Resumo:
Six-membered C,N] cyclopalladated sym N,N',N `'-tri(4-tolyl)guanidines, (ArNH)(2)C=NAr] (sym = symmetrical; Ar = 4-MeC6H4; LH24-tolyl) of the types (C,N)Pd(mu-OC(O)R)](2) (1 and 2), (C,N)Pd(mu-Br)](2) (3), cis-(C,N)PdLBr] (4-7), and (C,N)Pd(acac)] (8) were prepared in high yield by established methods with a view aimed at understanding the influence of the 4-tolyl substituent of the guanidine moiety upon the solution behaviour of 1-8. The composition of 1-8 was confirmed by elemental analysis, IR, and NMR spectroscopy, and mass spectrometry. The molecular structures of 1-6 were determined by single-crystal X-ray diffraction. Palladacycles 1-3 exist as a dimer in transoid conformation in the solid state while 4-6 exist as a monomer with cis configuration around the palladium atom as the Lewis base is placed cis to the Pd-C bond due to antisymbiosis. The NMR spectra of 1-8 revealed the presence of a single isomer in solution and this spectral feature is ascribed to the rapid inversion of the six-membered ``C,N]Pd'' ring due to the presence of sterically less hindered and more symmetrical 4-tolyl substituent in the =NAr unit of the guanidine moiety. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Side chain homologated derivatives of 2-chloro-3-(n-alkylamino)-1,4-naphthoquinone {n-alkyl: pentyl; L-5, hexyl; L-6, heptyl; L-7 and octyl; L-8} have been synthesized and characterized by elemental analysis, FT-IR, H-1 NMR, UV-visible spectroscopy and LC-MS. Compounds, L-4, n-alkyl: butyl; L-4}, L-6 and L-8 have been characterized by single crystal X-ray diffraction studies. The single crystal X-ray structures reveal that L-4 and L-8 crystallizes in P2(1) space group, while L-6 in P2(1)/c space group. Molecules of L-4 and L-8 from polymeric chains through C-H center dot center dot center dot O and N-H center dot center dot center dot O close contacts. L-6 is a dimer formed by N-H center dot center dot center dot O interaction. Slipped pi-pi stacking interactions are observed between quinonoid and benzenoid rings of L-4 and L-8. Orientations of alkyl group in L-4 and L-8 is on same side of the chain and polymeric chains run opposite to one another to form zip like structure to the alkyl groups. Antiproliferative activities of L-1 to L-8{n-alkyl: methyl; L-1, ethyl; L-2, propyl; L-3 and butyl; L-4} were studied in cancer cells of colon (COLO205), brain (U87MG) and pancreas (MIAPaCa2) where L-1, L-2 and L-3 were active in MIAPaCa2 (L-1 = 1-2 > L-3) and COLO205 (L-2 = L-3 > L-1) and inactive in U87MG. From antiproliferative studies with compounds L-1 to L-8 it can be concluded that homologation of 2-chloro-3-(n-alkylamino)-1,4-napthoquinone with saturated methyl groups yielded tissue specific compounds such as L-2 (for MIAPaCa2) and L-3 (for COLO205) with optimal activity. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.
Resumo:
Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.
Resumo:
Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]
Resumo:
In addition to the biologically active monomer of the protein insulin circulating in human blood, the molecule also exists in dimeric and hexameric forms that are used as storage. The insulin monomer contains two distinct surfaces, namely, the dimer forming surface (DFS) and the hexamer forming surface (HFS), that are specifically designed to facilitate the formation of the dimer and the hexamer, respectively. In order to characterize the structural and dynamical behavior of interfacial water molecules near these two surfaces (DFS and HFS), we performed atomistic molecular dynamics simulations of insulin with explicit water. Dynamical characterization reveals that the structural relaxation of the hydrogen bonds formed between the residues of DFS and the interfacial water molecules is faster than those formed between water and that of the HFS. Furthermore, the residence times of water molecules in the protein hydration layer for both the DFS and HFS are found to be significantly higher than those for some of the other proteins studied so far, such as HP-36 and lysozyme. In particular, we find that more structured water molecules, with higher residence times (similar to 300-500 ps), are present near HFS than those near DFS. A significant slowing down is observed in the decay of associated rotational auto time correlation functions of O-H bond vector of water in the vicinity of HFS. The surface topography and the arrangement of amino acid residues work together to organize the water molecules in the hydration layer in order to provide them with a preferred orientation. HFS having a large polar solvent accessible surface area and a convex extensive nonpolar region, drives the surrounding water molecules to acquire predominantly an outward H-atoms directed, clathrate-like structure. In contrast, near the DFS, the surrounding water molecules acquire an inward H-atoms directed orientation owing to the flat curvature of hydrophobic surface and the interrupted hydrophilic residual alignment. We have followed escape trajectory of several such quasi-bound water molecules from both the surfaces that reveal the significant differences between the two hydration layers.
Resumo:
Hydrogen peroxide (H2O2) level in biological samples is used as an important index in various studies. Quantification of H2O2 level in tissue fractions in presence of H2O2 metabolizing enzymes may always provide an incorrect result. A modification is proposed for the spectrofluorimetric determination of H2O2 in homovanillic acid (HVA) oxidation method. The modification was included to precipitate biological samples with cold trichloroacetic acid (TCA, 5% w/v) followed by its neutralization with K2HPO4 before the fluorimetric estimation of H2O2 is performed. TCA was used to precipitate the protein portions contained in the tissue fractions. After employing the above modification, it was observed that H2O2 content in tissue samples was >= 2 fold higher than the content observed in unmodified method. Minimum 2 h incubation of samples in reaction mixture was required for completion of the reaction. The stability of the HVA dimer as reaction product was found to be > 12 h. The method was validated by using known concentrations of H2O2 and catalase enzyme that quenches H2O2 as substrate. This method can be used efficiently to determine more accurate tissue H2O2 level without using internal standard and multiple samples can be processed at a time with additional low cost reagents such as TCA and K2HPO4.