179 resultados para RANDOM-ENERGY-MODEL
Resumo:
A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [ A. Patel and M. A. Rahaman Phys. Rev. A 82 032330 (2010)] provides an O(√NlnN) algorithm, which is not optimal. The scaling behavior can be improved to O(√NlnN) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78 012310 (2008). We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
Sub-pixel classification is essential for the successful description of many land cover (LC) features with spatial resolution less than the size of the image pixels. A commonly used approach for sub-pixel classification is linear mixture models (LMM). Even though, LMM have shown acceptable results, pragmatically, linear mixtures do not exist. A non-linear mixture model, therefore, may better describe the resultant mixture spectra for endmember (pure pixel) distribution. In this paper, we propose a new methodology for inferring LC fractions by a process called automatic linear-nonlinear mixture model (AL-NLMM). AL-NLMM is a three step process where the endmembers are first derived from an automated algorithm. These endmembers are used by the LMM in the second step that provides abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual proportions are fed to multi-layer perceptron (MLP) architecture as input to train the neurons which further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. AL-NLMM is validated on computer simulated hyperspectral data of 200 bands. Validation of the output showed overall RMSE of 0.0089±0.0022 with LMM and 0.0030±0.0001 with the MLP based AL-NLMM, when compared to actual class proportions indicating that individual class abundances obtained from AL-NLMM are very close to the real observations.
Resumo:
The lifetime calculation of large dense sensor networks with fixed energy resources and the remaining residual energy have shown that for a constant energy resource in a sensor network the fault rate at the cluster head is network size invariant when using the network layer with no MAC losses.Even after increasing the battery capacities in the nodes the total lifetime does not increase after a max limit of 8 times. As this is a serious limitation lots of research has been done at the MAC layer which allows to adapt to the specific connectivity, traffic and channel polling needs for sensor networks. There have been lots of MAC protocols which allow to control the channel polling of new radios which are available to sensor nodes to communicate. This further reduces the communication overhead by idling and sleep scheduling thus extending the lifetime of the monitoring application. We address the two issues which effects the distributed characteristics and performance of connected MAC nodes. (1) To determine the theoretical minimum rate based on joint coding for a correlated data source at the singlehop, (2a) to estimate cluster head errors using Bayesian rule for routing using persistence clustering when node densities are the same and stored using prior probability at the network layer, (2b) to estimate the upper bound of routing errors when using passive clustering were the node densities at the multi-hop MACS are unknown and not stored at the multi-hop nodes a priori. In this paper we evaluate many MAC based sensor network protocols and study the effects on sensor network lifetime. A renewable energy MAC routing protocol is designed when the probabilities of active nodes are not known a priori. From theoretical derivations we show that for a Bayesian rule with known class densities of omega1, omega2 with expected error P* is bounded by max error rate of P=2P* for single-hop. We study the effects of energy losses using cross-layer simulation of - large sensor network MACS setup, the error rate which effect finding sufficient node densities to have reliable multi-hop communications due to unknown node densities. The simulation results show that even though the lifetime is comparable the expected Bayesian posterior probability error bound is close or higher than Pges2P*.
Resumo:
Wireless networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem – the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node.In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels,where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information(CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a corresponding factored class of control policies corresponding to local cooperation between nodes with a local outage constraint. The resulting optimal scheme in this class can again be computed efficiently in a decentralized manner. We demonstrate significant energy savings for both slow and fast fading channels through numerical simulations of randomly distributed networks.
Resumo:
Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.
Resumo:
The statistically steady humidity distribution resulting from an interaction of advection, modelled as an uncorrelated random walk of moist parcels on an isentropic surface, and a vapour sink, modelled as immediate condensation whenever the specific humidity exceeds a specified saturation humidity, is explored with theory and simulation. A source supplies moisture at the deep-tropical southern boundary of the domain and the saturation humidity is specified as a monotonically decreasing function of distance from the boundary. The boundary source balances the interior condensation sink, so that a stationary spatially inhomogeneous humidity distribution emerges. An exact solution of the Fokker-Planck equation delivers a simple expression for the resulting probability density function (PDF) of the wate-rvapour field and also the relative humidity. This solution agrees completely with a numerical simulation of the process, and the humidity PDF exhibits several features of interest, such as bimodality close to the source and unimodality further from the source. The PDFs of specific and relative humidity are broad and non-Gaussian. The domain-averaged relative humidity PDF is bimodal with distinct moist and dry peaks, a feature which we show agrees with middleworld isentropic PDFs derived from the ERA interim dataset. Copyright (C) 2011 Royal Meteorological Society
Resumo:
This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.
Resumo:
We consider evolving exponential RGGs in one dimension and characterize the time dependent behavior of some of their topological properties. We consider two evolution models and study one of them detail while providing a summary of the results for the other. In the first model, the inter-nodal gaps evolve according to an exponential AR(1) process that makes the stationary distribution of the node locations exponential. For this model we obtain the one-step conditional connectivity probabilities and extend it to the k-step case. Finite and asymptotic analysis are given. We then obtain the k-step connectivity probability conditioned on the network being disconnected. We also derive the pmf of the first passage time for a connected network to become disconnected. We then describe a random birth-death model where at each instant, the node locations evolve according to an AR(1) process. In addition, a random node is allowed to die while giving birth to a node at another location. We derive properties similar to those above.
Resumo:
We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.
Resumo:
Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.
Resumo:
The standard molar Gibbs energies of formation of YbPt3 and LuPt3 intermetallic compounds have been measured in the temperature range 880 K to 1100 K using the solid-state cells:View the MathML source and View the MathML source The trifluoride of Yb is not stable in equilibrium with Yb or YbPt3. The results can be expressed by the equations: View the MathML source View the MathML source The standard molar Gibbs energy of formation of LuPt3 is −41.1 kJ · mol−1 more negative than that for YbPt3 at 1000 K. Ytterbium is divalent in the pure metal and trivalent in the intermetallic YbPt3. The energy required for the promotion of divalent Yb to the trivalent state is responsible for the less negative ΔfGmo of YbPt3. The enthalpies of formation of the two intermetallics are in reasonable agreement with Miedema's model. Because of the extraordinary stability of these compounds it is possible to reduce oxides of Yb and Lu with hydrogen in the presence of platinum at View the MathML source. The equilibrium chemical potential of oxygen corresponding to the reduction of Yb2O3 and Lu2O3 by hydrogen in the presence of platinum is presented in the form of an Ellingham diagram.
Resumo:
The Gibbs' energy offormation of the intermetallic compound URh3has been measured in the temperature range 980 to 1320 K using an oxide solid state cell incorporating yttria-doped thoria as the solid electrolyte and a mixture of manganese and manganese oxide as the reference electrode. The cell can be represented as Pt, Mn + MnO I (Y203)Th02 I Rh + URh3 + U02 + x' Rh, Pt The reversible emf of the cell was a linear function of temperature E = 15.60 +0.0237 T (±0.8) mY. Using auxiliary thermodynamic data for MnO and U02+ x the Gibbs' energy of formation of URh3 from component metals has been computed. The results can be expressed by the equation L'.G?< URh3 > = -316240 + 13.22 T (± 3000) J mol-1. The "third-law" enthalpy of formation of URh3at 298 K is -293.2 (± 4) kJ mol-1, significantly more negative than the value of -181.5 kJ mol-1 calculated using Miedema's model.
Resumo:
The Effective Exponential SNR Mapping (EESM) is an indispensable tool for analyzing and simulating next generation orthogonal frequency division multiplexing (OFDM) based wireless systems. It converts the different gains of multiple subchannels, over which a codeword is transmitted, into a single effective flat-fading gain with the same codeword error rate. It facilitates link adaptation by helping each user to compute an accurate channel quality indicator (CQI), which is fed back to the base station to enable downlink rate adaptation and scheduling. However, the highly non-linear nature of EESM makes a performance analysis of adaptation and scheduling difficult; even the probability distribution of EESM is not known in closed-form. This paper shows that EESM can be accurately modeled as a lognormal random variable when the subchannel gains are Rayleigh distributed. The model is also valid when the subchannel gains are correlated in frequency or space. With some simplifying assumptions, the paper then develops a novel analysis of the performance of LTE's two CQI feedback schemes that use EESM to generate CQI. The comprehensive model and analysis quantify the joint effect of several critical components such as scheduler, multiple antenna mode, CQI feedback scheme, and EESM-based feedback averaging on the overall system throughput.