192 resultados para Proteins -- Biotechnology
Resumo:
Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single-over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.
Resumo:
Genomic data of several organisms have revealed the presence of a vast repertoire of multi-domain proteins. The role played by individual domains in a multi-domain protein has a profound influence on the overall function of the protein. In the present analysis an attempt has been made to better understand the tethering preferences of domain families that occur in multi-domain proteins. The analysis has been carried out on an exhaustive dataset of 2 961 898 sequences of proteins from 930 organisms, where 741 274 proteins are comprised of at least two domain families. For every domain family, the number of other domain families with which it co-occurs within a protein in this dataset has been enumerated and is referred to as the tethering number of the domain family. It was found that, in the general dataset, the AAA ATPase family and the family of Ser/Thr kinases have the highest tethering numbers of 450 and 444 respectively. Further analysis reveals significant correlation between the number of members in a family and its tethering number. Positive correlation was also observed for the extent of a sequence and functional diversity within a family and the tethering numbers of domain families. Domain families that are present ubiquitously in diverse organisms tend to have large tethering numbers, while organism/kingdom-specific families have low tethering numbers. Thus, the analysis uncovers how domain families recombine and evolve to give rise to multi-domain proteins.
Resumo:
In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro-LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (C-exo/C-exo), (C-exo/Twisted C-exo-C-endo) and (Twisted C-endo-C-exo/Twisted C-endo-C-exo) categories are the most preferred combinations. For Proline rings in proteins, the states C-exo, Twisted C-exo-C-endo and Twisted C-endo-C-exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co-relation to the backbone conformation in which they are observed. It is likely that five-membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations.
Resumo:
Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.
Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo
Resumo:
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Resumo:
Biomineralization and biogenesis of iron ore deposits are illustrated in relation to indigenous microorganisms inhabiting iron ore mines. Aerobic and anaerobic microorganisms indigenous to iron oxide mineralization are analyzed. Microbially-induced flotation and flocculation of iron ore minerals such as hematite, alumina, calcite and quartz are discussed with respect to use of four types of microorganisms, namely, Paenibacillus polymyxa, Bacillus subtilis, Saccharomyces cerevisiae and Desulfovibrio desulfuricans. The role of the above organisms in the removal of silica, alumina, clays and apatite from hematite is illustrated with respect to mineral-specific bioreagents, surface chemical changes and microbe-mineral interaction mechanisms. Silica and alumina removal from real iron ores through biobeneficiation is outlined. Environmental benefits of biobeneficiation are demonstrated with respect to biodegradation of toxic reagents and environmentally-safe waste disposal and processing.
Resumo:
Inter-domain linkers (IDLs)' bridge flanking domains and support inter-domain communication in multi-domain proteins. Their sequence and conformational preferences enable them to carry out varied functions. They also provide sufficient flexibility to facilitate domain motions and, in conjunction with the interacting interfaces, they also regulate the inter-domain geometry (IDG). In spite of the basic intuitive understanding of the inter-domain orientations with respect to linker conformations and interfaces, we still do not entirely understand the precise relationship among the three. We show that IDG is evolutionarily well conserved and is constrained by the domain-domain interface interactions. The IDLs modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. Results of our analysis provide guidelines in modelling of multi-domain proteins from the tertiary structures of constituent domain components.
Resumo:
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.
Resumo:
Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.
Resumo:
Cells of Bacillus subtilis exhibited higher affinity towards hematite than to kaolinite. Bacterial cells were grown and adapted in the presence of hematite and kaolinite. Higher amounts of mineral-specific proteinaceous compounds were secreted in the presence of kaolinite while hematite-grown cells produced higher amounts of exopolysaccharides. Extracellular proteins (EP) exhibited higher adsorption density on kaolinite which was rendered more hydrophobic. Hematite surfaces were rendered more hydrophilic due to increased adsorption of extracellular polysaccharides (ECP). Significant surface chemical changes were produced due to interaction between minerals and extracellular proteins and polysaccharides. Iron oxides such as hematite could be effectively removed from kaolinite clays using selective bioflocculation of hematite after interaction with EP and ECP extracted from mineral-grown cells. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Establishing functional relationships between multi-domain protein sequences is a non-trivial task. Traditionally, delineating functional assignment and relationships of proteins requires domain assignments as a prerequisite. This process is sensitive to alignment quality and domain definitions. In multi-domain proteins due to multiple reasons, the quality of alignments is poor. We report the correspondence between the classification of proteins represented as full-length gene products and their functions. Our approach differs fundamentally from traditional methods in not performing the classification at the level of domains. Our method is based on an alignment free local matching scores (LMS) computation at the amino-acid sequence level followed by hierarchical clustering. As there are no gold standards for full-length protein sequence classification, we resorted to Gene Ontology and domain-architecture based similarity measures to assess our classification. The final clusters obtained using LMS show high functional and domain architectural similarities. Comparison of the current method with alignment based approaches at both domain and full-length protein showed superiority of the LMS scores. Using this method we have recreated objective relationships among different protein kinase sub-families and also classified immunoglobulin containing proteins where sub-family definitions do not exist currently. This method can be applied to any set of protein sequences and hence will be instrumental in analysis of large numbers of full-length protein sequences.
Resumo:
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and beta-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.
Resumo:
The use of titania nanotubes (TiO2-NT) as the working electrode provides a substantial improvement in the electrochemical detection of proteins. A biosensor designed using this strategy provided a robust method to detect protein samples at very low concentrations (C-protein ca 1 ng/mu l). Reproducible measurements on protein samples at this concentration (I-p,I-a of 80 +/- 1.2 mu A) could be achieved using a sample volume of ca 30 mu l. We demonstrate the feasibility of this strategy for the accurate detection of penicillin binding protein, PBP2a, a marker for methicillin resistant Staphylococcus aureus (MRSA). The selectivity and efficiency of this sensor were also validated using other diverse protein preparations such as a recombinant protein tyrosine phosphatase (PTP10D) and bovine serum albumin (BSA). This electrochemical method also presents a substantial improvement in the time taken (few minutes) when compared to conventional enzyme-linked immunosorbent assay (ELISA) protocols. It is envisaged that this sensor could substantially aid in the rapid diagnosis of bacterial infections in resource strapped environments. (C) 2014 Elsevier B.V. All rights reserved.