164 resultados para Protein Interaction Mapping


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topological homeostasis of bacterial chromosomes is maintained by the balance between compaction and the topological organization of genomes. Two classes of proteins play major roles in chromosome organization: the nucleoid-associated proteins (NAPs) and topoisomerases. The NAPs bind DNA to compact the chromosome, whereas topoisomerases catalytically remove or introduce supercoils into the genome. We demonstrate that HU, a major NAP of Mycobacterium tuberculosis specifically stimulates the DNA relaxation ability of mycobacterial topoisomerase I (TopoI) at lower concentrations but interferes at higher concentrations. A direct physical interaction between M. tuberculosis HU (MtHU) and TopoI is necessary for enhancing enzyme activity both in vitro and in vivo. The interaction is between the amino terminal domain of MtHU and the carboxyl terminal domain of TopoI. Binding of MtHU did not affect the two catalytic trans-esterification steps but enhanced the DNA strand passage, requisite for the completion of DNA relaxation, a new mechanism for the regulation of topoisomerase activity. An interaction-deficient mutant of MtHU was compromised in enhancing the strand passage activity. The species-specific physical and functional cooperation between MtHU and TopoI may be the key to achieve the DNA relaxation levels needed to maintain the optimal superhelical density of mycobacterial genomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rich data bearing on the structural and evolutionary principles of protein protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial `driver' mutations in oncogenesis. They also provide the foundation toward the design of protein protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important roles of proteins in cellular milieu is recognition of other biomolecules including other proteins. Protein protein complexes are involved in many essential cellular processes. Interfaces of protein protein complexes are traditionally known to be conserved in evolution and less flexible than other solvent interacting tertiary structural surface. But many examples are emerging where these features do not hold good. An understanding of inter-play between flexibility and sequence conservation is emerging, providing a fresh dimension to the paradigm of sequence structure function relationship. The functional manifestation of the inter-relation between sequence conservation and flexibility of interface is exemplified in this review using proteinase inhibitor protein complexes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of protein-protein interactions is indispensable in comprehending most of the biological processes in a cell. Small-scale experiments as well as large-scale high-throughput techniques over the past few decades have facilitated identification and analysis of protein-protein interactions which form the basis of much of our knowledge on functional and regulatory aspects of proteins. However, such rich catalog of interaction data should be used with caution when establishing protein-protein interactions in silico, as the high-throughput datasets are prone to false positives. Numerous computational means developed to pursue genome-wide studies on protein-protein interactions at times overlook the mechanistic and molecular details, thus questioning the reliability of predicted protein-protein interactions. We review the development, advantages, and shortcomings of varied approaches and demonstrate that by providing a structural viewpoint in terms of shape complementarity and interaction energies at protein-protein interfaces coupled with information on expression and localization of proteins homologous to an interacting pair, it is possible to assess the credibility of predicted interactions in biological context. With a focus on human pathogen Mycobacterium tuberculosis H37Rv, we show that such scrupulous use of details at the molecular level can predict physicochemically viable protein-protein interactions across host and pathogen. Such predicted interactions have the potential to provide molecular basis of probable mechanisms of pathogenesis and hence open up ways to explore their usefulness as targets in the light of drug discovery. (c) 2014 IUBMB Life, 66(11):759-774, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low T-g component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NF kappa B pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NF kappa B-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HuR is a ubiquitous, RNA binding protein that influences the stability and translation of several cellular mRNAs. Here, we report a novel role for HuR, as a regulator of proteins assembling at the 3' untranslated region (UTR) of viral RNA in the context of hepatitis C virus (HCV) infection. HuR relocalizes from the nucleus to the cytoplasm upon HCV infection, interacts with the viral polymerase (NS5B), and gets redistributed into compartments of viral RNA synthesis. Depletion in HuR levels leads to a significant reduction in viral RNA synthesis. We further demonstrate that the interaction of HuR with the 3' UTR of the viral RNA affects the interaction of two host proteins, La and polypyrimidine tract binding protein (PTB), at this site. HuR interacts with La and facilitates La binding to the 3' UTR, enhancing La-mediated circularization of the HCV genome and thus viral replication. In addition, it competes with PTB for association with the 3' UTR, which might stimulate viral replication. Results suggest that HuR influences the formation of a cellular/viral ribonucleoprotein complex, which is important for efficient initiation of viral RNA replication. Our study unravels a novel strategy of regulation of HCV replication through an interplay of host and viral proteins, orchestrated by HuR. IMPORTANCE Hepatitis C virus (HCV) is highly dependent on various host factors for efficient replication of the viral RNA. Here, we have shown how a host factor (HuR) migrates from the nucleus to the cytoplasm and gets recruited in the protein complex assembling at the 3' untranslated region (UTR) of HCV RNA. At the 3' UTR, it facilitates circularization of the viral genome through interaction with another host factor, La, which is critical for replication. Also, it competes with the host protein PTB, which is a negative regulator of viral replication. Results demonstrate a unique strategy of regulation of HCV replication by a host protein through alteration of its subcellular localization and interacting partners. The study has advanced our knowledge of the molecular mechanism of HCV replication and unraveled the complex interplay between the host factors and viral RNA that could be targeted for therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.1 is a novel histone acetyltransferase that acetylates histone H3 at the K9/K14 positions. Transient transfection of macrophages containing GFP-tagged histone H1 with RFP-tagged Rv3423.1 revealed that the protein co-localizes with the chromatin in the nucleus. Co-immunoprecipitation assays confirmed that the Rv3423.1-histone interaction is specific. Rv3423.1 protein was detected in the culture filtrate of virulent but not avirulent M. tuberculosis. Infection of macrophages with recombinant Mycobacterium smegmatis constitutively expressing Rv3423.1 resulted in a significant increase in the number of intracellular bacteria. However, the protein did not seem to offer any growth advantage to free-living recombinant M. smegmatis. It is highly likely that, by binding to the host chromatin, this histone acetyltransferase from M. tuberculosis may manipulate the expression of host genes involved in anti-inflammatory responses to evade clearance and to survive in the intracellular environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.