249 resultados para Precursor
Resumo:
Single phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1(PbTiO3) ceramics were prepared using the columbite precursor method after optimizing the synthesis conditions. X-ray diffraction (XRD) studies were carried out to verify the phase formation at each processing step. Scanning electron microscopy (SEM) was employed to observe the microstructure of the sintered ceramics. Impedance and modulus spectroscopic data were used to gain an insight into the electrical properties of the samples and with a view to observing the relaxations in them. (C) 1999 Elsevier Science Ltd.
Resumo:
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.
Resumo:
Details of the first total synthesis of the marine natural product dihydrotochuinyl acetate is described. Cyclopentenone annulation of p-methylacetophenone via a Claisen rearrangement-Wacker oxidation based sequence generated the cyclopentenone 3, a known precursor for the sesquiterpenes cuparene, laurene, alpha-cuparenone and beta-cuparenones. Conversion of the ketone moiety into a carboxylate followed by stereoselective alkylation and reduction transformed the cyclopentenone 3 into the primary alcohol 19. Birch reduction of the alcohol 19 followed by acetylation furnished (+/-)-dihydrotochuinyl acetate, whereas direct acetylation of 19 furnished (+/-)-tochuinyl acetate. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
In this study an atmospheric glow discharge with a fluorocarbon gas as precursor was used to modify the surface of polydimethyl siloxane (PDMS -(CH3)(2)SiO](n)-). The variation in protein immobilizing capability of PDMS was studied for different times of exposure. It was observed that the concentration of proteins adsorbed on the surface varied in an irregular manner with treatment time. The fluorination results in the formation of a thin film of fluorocarbon on the PDMS surface. The AFM and XPS data suggest that the film cracks due to stress and regains its uniformity thereafter. This Stranski-Krastanov growth model of the film was due to the high growth rate offered by atmospheric glow discharge. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Recently, we demonstrated a very general route to monolithic macroporous materials prepared without the use of templates (Rajamathi et al. J. Mater. Chem. 2001, 11, 2489). The route involves finding a precursor containing two metals, A and B, whose oxides are largely immiscible. Firing of the precursor followed by suitable sintering results in a monolith from which one of the oxide phases can be chemically leached out to yield a macroporous mass of the other oxide phase. The metals A and B that we employed in the demonstration were Ni and Zn. From the NiO-ZnO monolith that was obtained by decomposing the precursor, ZnO could be leached out at high pH to yield macroporous NiO. In the present work, we show that combustion-chemical (also called self-propagating) decomposition of a mixture of Ni and Zn nitrates with urea as a fuel yields an intimate mixture of the oxides that can be sintered and leached with alkali to form a macroporous NiO monolith. The new process that we present here thereby avoids the need for a crystalline single-source precursor. A novel and unanticipated aspect of the present work is that the combination of high temperatures and rapid quenching associated with combustion synthesis results in an intimate mixture of wurtzite ZnO and the metastable rock-salt Ni1-xZnxO where x is about 0.3. Leaching this monolith with alkali gives a macroporous mass of rock-salt Ni1-xZnxO, which upon reduction in H-2/Ar forms macroporous Ni and ZnO. There are thus two stages in the process that lead to two modes of pore formation. The first is associated with leaching of ZnO by alkali. The second is associated with the reduction of porous Ni1-xZnxO to give porous Ni and ZnO.
Resumo:
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L)][BF4](2) (dppm = Ph2PCH2PPh2; L = phosphite) have been prepared by protonating the precursor hydride complexes cis-[(dPPM)(2)Ru(H)(L)][BF4] using HBF4.Et2O. The precursor hydride complexes have been obtained from trans-[(dppm)(2)Ru(H)(L)][BF4][(L = phospfiite) via a rare acid-catalysed isomerization reaction in six coordinate species. The trans-[(dppm)(2)Ru(H)(L)][BF4] complexes (L = phosphine) upon protonation gave the isomerized derivatives, however, further addition of acid resulted in a five-coordinate species, [(dppm)(2)RuCl](+) presumably via an intermediate phosphine dihydrogen complex. The electronic as well as the steric properties of the co-ligands seem to strongly influence the structure-reactivity behaviour of this series of complexes.
Resumo:
Simple and rapid HPLC, GC, and TLC procedures have been developed for detection and determination of nimesulide, a non-pharmacopeial drug, in preformulation and dosage form. Use of these techniques has enabled separation of impurities and the precursor in the bulk material and in formulations. Isocratic reversed-phase HPLC was performed on a C-18 column with methanol-water-acetic acid, 67:32:1 (v/v), as mobile phase and UV detection at 230 nm. Calibration curves were linear over the concentration range 100-1000 mug mL(-1) with a good correlation coefficient (0.9993) and a coefficient of variation of 1.5%. Gas chromatography was performed on an OV-17 packed column with temperature programming and flame-ionization detection. The lower limit of determination by HPLC and GC was 4 ppm. Thin-layer chromatography of nimesulide was performed on silica gel G with toluene-ethyl acetate, 8:2, as mobile phase. Stability testing of the drug was performed under different temperature, humidity, and UV-radiation conditions.
Resumo:
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Resumo:
Deposition of Al2O3 coatings by CVD is of importance because they are often used as abrading material in cemented carbide cutting tools. The conventionally used CVD process for Al2O3 involves the corrosive reactant AlCl3. In this paper, we report on the thermal characterisation of the metalorganic precursors namely aluminium tristetramethyl-heptanedionate [Al(thd)(3)] and aluminium tris-acetylacetonate [Al(acac)(3)] and their application to the CVD of Al2O3 films. Crystalline Al2O3 films were deposited by MOCVD at low temperatures by the pyrolysis of Al(thd)(3) and Al(acac)(3). The films were deposited on a TiN-coated tungsten carbide (TiN/WC) and Si(100) substrates in the temperature range 500-1100degreesC. The as-deposited films were characterised by x-ray diffraction, optical microscopy, scanning and transmission electron microscopy, Auger electron spectroscopy. The observed crystallinity of films grown at low temperatures, their microstructure, and composition may be interpreted in terms of a growth process that involves the melting of the metalorganic precursor on the hot growth surface.
Resumo:
Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.
Resumo:
We report the successful synthesis of crystalline carbon nitride by chemical vapor deposition of certain nitrogen containing organic precursors. The precursor is heated and the vapors enter the hot deposition zone where they are pyrolysed and deposited in the form of thin films over pretreated substrates. The powder x-ray diffraction analysis shows clear peaks corresponding to the carbon nitride crystals of tetragonal form in addition to a broad hump corresponding to the amorphous nitrogenated carbon. The crystallites size is similar to300Angstrom and the volume fraction of the crystallites is about similar to7%. The optimum conditions of preparation are found out. The Infrared spectra of these samples also suggest the formation of Carbon Nitride crystals. The analysis reconfirms that the material contains crystallites of Carbon Nitride embedded in an amorphous matrix of nitrogenated carbon. Further the material is characterized by C,H,N elemental analysis, EDX and Raman spectra. Since all the above analyses probe the bulk material, the background amorphous matrix in this case, expecting a clear evidence of nanometer sized crystallites from these tests are unlikely. Attempts are being made to increase the yield of these carbon nitride crystallites.
Resumo:
Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.
Resumo:
Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.
Resumo:
Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.