310 resultados para Potential energy Hydrogen bond


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An apolar synthetic analog of the first 10 residues at the NH2-terminal end of zervamicin IIA crystallizes in the triclinic space group P1 with cell dimensions a = 10.206 +/- 0.002 A, b = 12.244 +/- 0.002 A, c = 15.049 +/- 0.002 A, alpha = 93.94 +/- 0.01 degrees, beta = 95.10 +/- 0.01 degrees, gamma = 104.56 +/- 0.01 degrees, Z = 1, C60H97N11O13 X 2H2O. Despite the relatively few alpha-aminoisobutyric acid residues, the peptide maintains a helical form. The first intrahelical hydrogen bond is of the 3(10) type between N(3) and O(0), followed by five alpha-helix-type hydrogen bonds. Solution 1H NMR studies in chloroform also favor a helical conformation, with seven solvent-shielded NH groups. Continuous columns are formed by head-to-tail hydrogen bonds between the helical molecules along the helix axis. The absence of polar side chains precludes any lateral hydrogen bonds. Since the peptide crystallizes with one molecule in a triclinic space group, aggregation of the helical columns must necessarily be parallel rather than antiparallel. The packing of the columns is rather inefficient, as indicated by very few good van der Waals' contacts and the occurrence of voids between the molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tripeptide Boc-Aib-Leu-Pro-NHMe crystallizes in the orthorhombic space group P212121 with a = 9.542, b = 15.200, c = 18.256 à and Z = 4. Each peptide is associated wth two water molecules in the asymmetric unit of the crystal. The structure has been solved by direct methods and refined to an R-value of 0.069. The peptide adopts a structure without any intramolecular hydrogen bond. The three residues occupy distinctly different regions of the Ramachandran map: Aib in the left-handed 310-helical region (± = 67°, ± = 23°), Leu in the β-sheet region (± = - 133°, ± = 142°) and Pro in the poly (Pro) II region (± = - 69°, ± = 151°). An interesting observation is that each water molecule participates in four hydrogen bonds with distorted tetrahedral coordination about the oxygen atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical potential energy calculations have been carried out to determine the preferred conformations of some oligosaccharides having the trimannosidic core structure (Man3GlcNAc2) and which interact with concanavalin A. In the minimum energy conformations for the trimannosidic core the mannose residue on the Man α(1â6) arm comes close to one of the N-acetylglucosamine residues of the core. The addition of N-acetylglucosamine residues to the terminal mannose residues does not alter the preferred conformation of the trimannosidic core although it alters the relative preference of some of the higher energy conformations. The minimum energy conformation broadly agrees with available X-ray data. The presence of a bisecting N-acetylglucosamine residue on the middle mannose does not push the trimannosidic core to any new conformation but it does alter the relative preference for a particular conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both diglycine sulphate (DGS) and diglycine sulphate monohydrate (DGS.H2O) are reported to crystallize from solution with pH < 1(1,2). DGS.H2O (point group 2/m; Z = 4) shows a dielectric anomaly at 72°C suggestive of antiferroelectric transition(1). The crystals obtained by us from solution with pH < 0.5 at 20-25°C were always DGS (point group mmm; Z = 8) as confirmed by X-ray studies. The measurement of its dielectric constant along [100], [010] and [001] did not indicate any phase transition in the range 5-400°K. Thus DGS is a normal dielectric unlike TGS. The polarized Raman spectra and the infrared spectra were recorded to examine the configuration of glycine in DGS(3). The vibration spectra reveals that both the glycines in DGS exist as NH3+CH2COOH, thus precluding the hydrogen bond of the type N+-Hâ¦O- which exists between two glycine units in TGS. This seems to be a good reason for the difference in the dielectric behaviour of these two glycine sulphates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of hydroxyproline residues stabilizing the collagen triple-helical structure by the formation of additional hydrogen bonds through their γ-hydroxyl group has been studied from structural considerations. It is not possible for this hydroxyl group to form a direct hydrogen bond with a suitable group in a neighbouring chain of the triple-helical protofibril. However, in the modified one-bonded structure, which is stabilized by additional hydrogen bonds being formed through water molecules as intermediaries (put forward in 1968 by Ramachandran, G. N. and Chandrasekharan, R.), it is found that the γ-hydroxyl group of hydroxyproline can form a good hydrogen bond with the water oxygen as acceptor, the hydrogen bond length being 2.82 Ã. It is proposed that, in addition to stabilizing the collagen triple-helical structure due to the stereochemical properties of the pyrrolidine ring, hydroxyproline gives added stability by the formation of an extra hydrogen bond. Experimental studies on the determination of shrinkage and denaturation temperatures of native collagen and its synthetic analogues, as a function of their hydroxyproline content, are being undertaken to test this hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meclofenamic acid, C I4HIICI2NO2, probably the most potent among analgesic fenamates, crystallizes in the triclinic space group P1, with a = 8.569 (5), b = 8.954(8), c -- 9.371 (4) A, ct = 103.0 (2), fl -- 103.5 (2), y = 92.4 (2) ° , Z = 2, D m = 1.43 (4), D c = 1.41 Mg m -3. The structure was solved by direct methods and refined to R = 0.135 for 1062 observed reflections. The anthranilic acid moiety in the molecule is nearly planar and is nearly perpendicular to the 2,6-dichloro-3-methylphenyl group. The molecules, which exist as hydrogen-bonded dimers, have an internal hydrogen bond involving the imino and the carboxyl groups. The methyl group is disordered and occupies two positions with unequal occupancies. The disorder can be satisfactorily explained in terms of the rotational isomerism of the 2,6-dichloro-3-methylphenyl group about the bond which connects it to the anthranilic acid moiety and the observed occupancies on the basis of packing considerations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L-Lysine d-pantothenate, a 1:1 amino acid-vitamin complex, crystallizes in the monoclinic space group P21 with Image Full-size image (1K) .The structure has been solved by direct methods and refined to an R value of 0.053 for 1868 observed reflections. The zwitterionic positively charged lysine molecules in the structure assume the sterically most favourable conformation with an all-trans side chain trans to the α-carboxylate group. The pantothenate anion has a somewhat folded conformation stabilised by an intramolecular bifurcated hydrogen bond. The unlike molecules aggregate into separate alternating layers. The molecules in the lysine layers form a head-to-tail sequence parallel to the a-axis. The interactions which hold the adjacent layers together include those between the side chain amino group of lysine and the carboxylate group in the pantothenate anion. The geometry of these interactions is such that each carboxylate group is sandwiched between two amino groups in a periodic arrangement of alternating carboxylate and amino groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conformational analysis of d-pantothenic acid using classical semiempirical methods has been carried out. The pantothenic acid molecule can exist in the neutral form (I) or in the ionised form (II) with a deprotonated negatively charged carboxyl group. The neutral molecule as well as the anion is highly flexible and has an ensemble of several allowed conformations rather than one or two unique conformations. The distribution of allowed conformations indicate that the β-alanine as well as the pantoic acid part of the molecule prefers partially folded conformations. The conformation of the former is greatly affected by the ionisation state of the carboxyl group whereas that of the latter is not. Possibility of intramolecular hydrogen bonding in different allowed conformations has also been explored. A bifurcated hydrogen bond involving a carboxyl (or carboxylate) oxygen atom and a hydroxyl oxygen atom, as acceptors, and the amide nitrogen atom as the donor occurs frequently in both I and II. Amongst the two crystal structures containing pantothenic acid reported so far, the conformation of the molecule in l-lysine d-pantothenate lies in the allowed region and is stabilised by a bifurcated intramolecular hydrogen bond, whereas that in the calcium bromide salt falls in a disallowed region, presumably due to the requirement of tridentate metal coordination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular structure of collagen is now accepted to be based on a triple-stranded coiled-coil, in which the three strands are held together predominantly by hydrogen bonds. Recent experimental evidence has shown that the presence of hydroxyproline residues in the third position of the repeating tripeptide unit lends additional stability to the collagen structure. In this paper, we report a model structure, which is supported by these observations. In a model structure proposed earlier, there are two hydrogen bonds per tripeptide unit, one of which is a direct interchain hydrogen bond, while the second hydrogen bond can be formedvia a water molecule. It has now been shown that the same water molecule can also form a hydrogen bond with the oxygen of theγ-hydroxyl group of hydroxyproline in the third position in the sequence (Gly-R2-R3). This hydroxyl group can also take part in an inter-triple-helix hydrogen bond. Our studies thus show the role played by hydroxyproline residues in the structure and stability of collagen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex crystallizes in the space group P21/c with four formula units in a unit cell of dimensions a= 12.747, b= 7.416, c= 17.894 A and/3= 90.2 °. The structure has been solved by the symbolic addition procedure using three-dimensional photographic data and refined to an R value of 0.079 for 2019 observed reflexions. The pyramidal nature of the two hetero nitrogen atoms in the antipyrine molecule is inter:nediate between that observed in free antipyrine and in some of its metal complexes. The molecule is more polar than that in crystals of free antipyrine but less so compared with that in metal complexes. In the salicylic acid molecule, the hydroxyl group forms an internal hydrogen bond with one of the oxygen atoms in the carboxyl group. The association between the salicylic acid and the antipyrine molecules is achieved through an intermolecular hydrogen bond with the other carboxyl oxygen atom in the salicylic acid molecule as the proton donor and the carboxyl oxygen atom of the antipyrine molecule as the acceptor.