228 resultados para Piezoelectric stack actuators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the last decade, there is a growing need for patterned biomolecules for various applications ranging from diagnostic devices to enabling fundamental biological studies with high throughput. Protein arrays facilitate the study of protein-protein, protein-drug or protein-DNA interactions as well as highly multiplexed immunosensors based on antibody-antigen recognition. Protein microarrays are typically fabricated using piezoelectric inkjet printing with resolution limit of similar to 70-100 mu m limiting the array density. A considerable amount of research has been done on patterning biomolecules using customised biocompatible photoresists. Here, a simple photolithographic process for fabricating protein microarrays on a commercially available diazo-naphthoquinone-novolac-positive tone photoresist functionalised with 3-aminopropyltriethoxysilane is presented. The authors demonstrate that proteins immobilised using this procedure retain their activity and therefore form functional microarrays with the array density limited only by the resolution of lithography, which is more than an order of magnitude compared with inkjet printing. The process described here may be useful in the integration of conventional semiconductor manufacturing processes with biomaterials relevant for the creation of next-generation bio-chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The β-phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α-phase. The α-phase is transformed to piezoelectric β-phase when the film is hot-stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α- to β-phases by using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β-phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a method to fabricate high-density biological microarrays using lithographic patterning of polyelectrolyte multi layers formed by spin assisted electrostatic layer-by-layer assembly. Proteins or DNA can be immobilized on the polyelectrolyte patterns via electrostatic attachment leading to functional microarrays. As the immobilization is done using electrostatically assembled polyelectrolyte anchor, this process is substrate independent and is fully compatible with a standard semiconductor fabrication process flow. Moreover, the electrostatic assembly of the anchor layer is a fast process with reaction saturation times of the order of a few minutes unlike covalent schemes that typically require hours to reach saturation. The substrate independent nature of this technique is demonstrated by functionalizing glass slides as well as regular transparency sheets using the same procedure. Using a model protein assay, we demonstrate that the non-covalent immobilization scheme described here has competitive performance compared to conventional covalent immobilization schemes described in literature. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermo Acoustic Prime Movers (TAPMs) are being considered as the ideal choice for driving the Pulse Tube Cryocoolers replacing the conventional compressors. The advantages are the absence of moving components and they can be driven by low grade energy as such as fuel, gas, solar energy, waste heat etc. While the development of such TAPMs is in progress in our laboratory, their design and fabrication should be guided by numerical modeling and this may be done by several methods such as solving the energy equation 1], enthalpy flow model 2], CFD 3], etc. We have used CFD technique, since it provides a better insight into the velocity and temperature profiles. The analysis is carried out by varying parameters such as (a) temperature difference across the stack, (b) stack and resonator lengths and (c) different working fluids such as air, nitrogen, argon etc. The theoretical results are compared with the experimental data wherever possible and they are in reasonably good agreement with each other. The analysis indicate that (i) larger temperature difference across the stack leads to increased acoustic amplitude, (ii) longer resonator leads to decrease in frequency with lesser amplitude and (iii) there exists an optimal stack length for the best performance of TAPM. These results are presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoacoustic engines are energy conversion devices that convert thermal energy from a high-temperature heat source into useful work in the form of acoustic power while diverting waste heat into a cold sink; it can be used as a drive for cryocoolers and refrigerators. Though the devices are simple to fabricate, it is very challenging to design an optimized thermoacoustic primemover with better performance. The study presented here aims to optimize the thermoacoustic primemover using response surface methodology. The influence of stack position and its length, resonator length, plate thickness, and plate spacing on pressure amplitude and frequency in a thermoacoustic primemover is investigated in this study. For the desired frequency of 207 Hz, the optimized value of the above parameters suggested by the response surface methodology has been conducted experimentally, and simulations are also performed using DeltaEC. The experimental and simulation results showed similar output performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermoacoustic prime mover is part of an interesting class of prime movers that can be used to generate clean energy and to drive cryogenic refrigeration systems. A thermoacoustic prime mover has been built based on the linear thermoacoustic model, which consumes thermal energy and produces acoustic energy. The objective of this article is to design a thermoacoustic prime mover that can be used as a drive for a thermoacoustic refrigerator. It is found that stack plate length and its distance from the closed end have a significant effect on the thermal efficiency of the prime mover. For different stack center positions, there is an optimum length of stack plate that has a significant effect on the performance of the thermoacoustic prime mover in terms of temperature gradient, frequency, and pressure amplitude. In this study, the experiments have been done on the thermoacoustic prime mover by varying stack position and its length with constant blockage ratio and resonator length. The results obtained from the experiments have been compared to the theoretical results acquired from DeltaEc Software.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline powders of Ba1-xCaxBi4Ti4O15 (where x = 0, 0.25, 0.50, 0.75 and 1) were prepared via the conventional solid-state reaction route. X-ray diffraction (XRD) and Raman scattering techniques have been employed to probe into the structural changes on changing x. XRD analyses confirmed the formation of monophasic bismuth layered structure of all the above compositions with an increase in orthorhombic distortion with increase in x. Raman spectra revealed a redshift in A(1g) peak and an increase in the B-2g/B-3g splitting with increasing Ca content. The average grain size was found to increase with increasing x. The temperature of the maximum dielectric constant (T-m) increased linearly with increasing Ca-content whereas the diffuseness of the phase transition was found to decrease with the end member CaBi4Ti4O15 showing a frequency independent sharp phase transition around 1048 K. Ca doping resulted in a decrease in the remnant polarization and an increase in the coercive field. Ba0.75Ca0.25Bi4Ti4O15 ceramics showed an enhanced piezoelectric coefficient d(33) of 15 pC N-1 at room temperature. Low values of dielectric losses and tunability of temperature coefficient of dielectric constant (tau(epsilon)) in the present solid-solution suggest that these compounds can be of potential use in microwave dielectrics at high temperatures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports optical and nanomechanical properties of predominantly a-axis oriented AlN thin films. These films were deposited by reactive DC magnetron sputtering technique at an optimal target to substrate distance of 180 mm. X-ray rocking curve (FWHM = 52 arcsec) studies confirmed the preferred orientation. Spectroscopic ellipsometry revealed a refractive index of 1.93 at a wavelength of 546 nm. The hardness and elastic modulus of these films were 17 and 190 GPa, respectively, which are much higher than those reported earlier can be useful for piezoelectric films in bulk acoustic wave resonators. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772204]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the idea of designing a structure for a desired mode shape, intended towards applications such as resonant sensors, actuators and vibration confinement, we present the inverse mode shape problem for bars, beams and plates in this work. The objective is to determine the cross-sectional profile of these structures, given a mode shape, boundary condition and the mass. The contribution of this article is twofold: (i) A numerical method to solve this problem when a valid mode shape is provided in the finite element framework for both linear and nonlinear versions of the problem. (ii) An analytical result to prove the uniqueness and existence of the solution in the case of bars. This article also highlights a very important question of the validity of a mode shape for any structure of given boundary conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this paper is on the practical aspects of design, prototyping, and testing of a compact, compliant external pipe-crawling robot that can inspect a closely spaced bundle of pipes in hazardous environments and areas that are inaccessible to humans. The robot consists of two radially deployable compliant ring actuators that are attached to each other along the longitudinal axis of the pipe by a bidirectional linear actuator. The robot imitates the motion of an inchworm. The novel aspect of the compliant ring actuator is a spring-steel compliant mechanism that converts circumferential motion to radial motion of its multiple gripping pads. Circumferential motion to ring actuators is provided by two shape memory alloy (SMA) wires that are guided by insulating rollers. The design of the compliant mechanism is derived from a radially deployable mechanism. A unique feature of the design is that the compliant mechanism provides the necessary kinematic function within the limited annular space around the pipe and serves as the bias spring for the SMA wires. The robot has a control circuit that sequentially activates the SMA wires and the linear actuator; it also controls the crawling speed. The robot has been fabricated, tested, and automated. Its crawling speed is about 45 mm/min, and the weight is about 150 g. It fits within an annular space of a radial span of 15 mm to crawl on a pipe of 60-mm outer diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most Java programmers would agree that Java is a language that promotes a philosophy of “create and go forth”. By design, temporary objects are meant to be created on the heap, possibly used and then abandoned to be collected by the garbage collector. Excessive generation of temporary objects is termed “object churn” and is a form of software bloat that often leads to performance and memory problems. To mitigate this problem, many compiler optimizations aim at identifying objects that may be allocated on the stack. However, most such optimizations miss large opportunities for memory reuse when dealing with objects inside loops or when dealing with container objects. In this paper, we describe a novel algorithm that detects bloat caused by the creation of temporary container and String objects within a loop. Our analysis determines which objects created within a loop can be reused. Then we describe a source-to-source transformation that efficiently reuses such objects. Empirical evaluation indicates that our solution can reduce upto 40% of temporary object allocations in large programs, resulting in a performance improvement that can be as high as a 20% reduction in the run time, specifically when a program has a high churn rate or when the program is memory intensive and needs to run the GC often.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Morphotropic phase boundary (MPB) systems are characterized by the coexistence of two ferroelectric phases and are associated with anomalous piezoelectric properties. In general, such coexistence is brought about by composition induced ferroelectric-ferroelectric instability. Here we demonstrate that a pure ferroelectric compound Na1/2Bi1/2TiO3 (NBT) exhibits the coexistence of two ferroelectric phases, rhombohedral (R3c) and monoclinic (Cc), in its equilibrium state at room temperature. This was unravelled by adopting a unique strategy of comparative structural analysis of electrically poled and thermally annealed specimens using high resolution synchrotron x-ray powder diffraction data. The relative fraction of the coexisting phases was found to be highly sensitive to thermal, mechanical, and electrical stimuli. The coexistence of ferroelectric phases in the ground state of the pure compound will have significant bearing on the way MPB is induced in NBT-based lead-free piezoceramics. DOI: 10.1103/PhysRevB.87.060102