282 resultados para POLYAMIDE-6
Resumo:
Methanolic hydrogen chloride cyclization of the triketone 8, prepared from the Mannich base 7 and 2-methylcyclopentane-1,3-dione, gives ketones 9 and 10. NaBH4 reduction of 9 followed by Grignard reaction with CH3MgI affords the diol 12. Catalytic hydrogenation of 12 followed by PCC oxidation yields the ketoalcohol 13. Dehydration of 13 with SOCl2/pyridine results in a 1:1 mixture of the endo-14 and exo-15 olefins, separated by chromatography.
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Hyoscyamine 6 beta-hydroxylase (H6H; EC 1.14.11.11), an important enzyme in the biosynthesis of tropane alkaloids, catalyzes the hydroxylation of hyoscyamine to give 6 beta-hydroxyhyoscyamine and its epoxidation in the biosynthetic pathway leading to scopolamine. Datura metel produces scopolamine as the predominant tropane alkaloid. The cDNA encoding H6H from D. mete! (DmH6H) was cloned, heterologously expressed and biochemically characterized. The purified recombinant His-tagged H6H from D. mete! (DmrH6H) was capable of converting hyoscyamine to scopolamine. The functionally expressed DmrH6H was confirmed by HPLC and ESI-MS verification of the products, 6 beta-hydroxyhyoscyamine and its derivative, scopolamine; the DmrH6H epoxidase activity was low compared to the hydroxylase activity. The K-m values for both the substrates, hyoscyamine and 2-oxoglutarate, were 50 mu M each. The CD (circular dichroism) spectrum of the DmrH6H indicated a preponderance of alpha-helicity in the secondary structure. From the fluorescence studies, Stern-Volmer constants for hyoscyamine and 2-oxoglutarate were found to be 0.14 M-1 and 0.56 M-1, respectively. These data suggested that the binding of the substrates, hyoscyamine and 2-oxoglutarate, to the enzyme induced significant conformational changes. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Four new neutral copper-azido polymers Cu-6(N-3)(12)(aem)(2)](n)(1), Cu-6(N-3)(12)(dmeen)(2)(H2O)(2)](n) (2), Cu-6(N-3)(12)(N,N'-dmen)(2)](n) (3), and Cu-6(N-3)(12)(hmpz)(2)](n) (4) aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O/CuCl2 center dot 2H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-6(II) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
Total syntheses of (±)-1,4-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol(11a), (±)-2,3-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol (11b), and (±)-3-methoxy-6,6-dimethyl-B-norestra-1,3,5(10)trien-17?-ol (11c), have been carried out starting from 4,7-dimethoxy-3,3-dimethylindan-1-one (1), 5,6-dimethoxy-3,3-dimethylindan-1-one (2), and 4?-methoxy-3-methylbut-2-enophenone (4), respectively. Generally, it is found that the intermediate 6,6-dimethyl-B-norestra-1,3,5(10),8-tetraen-17?-ols (10), on lithium�liquid ammonia reduction, yield a mixture of 8?,9?- and 8?,9?-trienols, (11) and (12) respectively, in the ratio 1 : 1. This is due to the comparable stabilities of these two isomers. However, the reduction carried out in presence of aniline affords a higher percentage of the 8?,9?-trienol (11). The assignment of configurations is made by chemical and 1H n.m.r. analysis. Catalytic hydrogenation of the tetraenols (10) is shown to proceed via initial isomerisation to the corresponding 6,6-dimethyl-B-norestra-1,3,5(10),9(11)-tetraen-17?-ols (26), followed by hydrogenation from the ?-side to give, exclusively, the 8?,9?-trienols (12).
Resumo:
The reactions of halogenocyclotetraphosphazatetraenes N4P4X8, with nucleophiles have received little attention and only the reactions of the octachloride, N4P4Cl8, with amines have been investigated in any detail.1 Millington and Sowerby2 studied the reaction of N4P4Cl8 with dimethylamine and isolated the derivatives, N4P4Cl8-n (NMe2)n, n = 2,3,4,5,6,8;several N-methylanilino derivatives
Resumo:
The interaction of five crown ethers, 15-crown-5, 18-crown-6, benzo-15-crown-5, dibenzo-l8-crown-6, and dibenzo-24-crown-8 with 2, 3, 5, 6 - tetracyano pyrazine has been studied by spectroscopic methods. The association constants and thermodynamic parameters of the 1:1 complexes formed by donor ethers with the acceptor have been evaluated. There is an indication that oxygens of the ethers and aryl part of the ether act cooperatively in binding of the acceptor.