464 resultados para PIEZOELECTRIC FIELD
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.
Resumo:
A pulsed field gradient spin echo NMR spectrometer has been assembled by interfacing a programmable pulse generator and a data acquisition system designed and fabricated in our laboratory with other imported units. Calibration results of the magnetic field gradients are presented.
Resumo:
Strained epitaxial La0.5Sr0.5CoO3 films are grown on LaAlO3 substrate. Structural, electrical,and magnetic measurements were carried out. Out of plane lattice parameter of the film undergoes compressive strain and the coercivity is enhanced. The zero field cooled (ZFC) magnetization curve for a field applied parallel to the film plane shows a jump, which suggests a spin reorientation transition (SRT), while ZFC magnetization for a field applied perpendicular to the film plane is featureless. This jump in magnetization is shifted to higher temperatures when the magnetic field is reduced. The SRT is attributed to the strain in the film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Aims. Following an earlier proposal for the origin of twist in the magnetic fields of solar active regions, we model the penetration of a wrapped up background poloidal field into a toroidal magnetic flux tube rising through the solar convective zone.Methods. The rise of the straight, cylindrical flux tube is followed by numerically solving the induction equation in a comoving Lagrangian frame, while an external poloidal magnetic field is assumed to be radially advected onto the tube with a speed corresponding to the rise velocity.Results. One prediction of our model is the existence of a ring of reverse current helicity on the periphery of active regions. On the other hand, the amplitude of the resulting twist depends sensitively on the assumed structure ( diffuse vs. concentrated/intermittent) of the active region magnetic field right before its emergence, and on the assumed vertical profile of the poloidal field. Nevertheless, in the model with the most plausible choice of assumptions a mean twist comparable to the observations results.Conclusions. Our results indicate that the contribution of this mechanism to the twist can be quite significant, and under favourable circumstances it can potentially account for most of the current helicity observed in active regions.
Resumo:
Abstract. We critically examine some recent claims that certain field theories with and without boson kinetic energy terms are equivalent. We point out that the crucial element in these claims is the finiteness or otherwise of the boson wavefunction renormalisation constant. We show that when this constant is finite, the equivalence proof offered in the literature fails in a direct way. When the constant is divergent, the claimed equivalence is only a consequence of improper use of divergent quantities.
Resumo:
The nonminimal coupling of a massive self-interacting scalar field with a gravitational field is studied. Spontaneous symmetry breaking occurs in the open universe even when the sign on the mass term is positive. In contrast to grand unified theories, symmetry breakdown is more important for the early universe and it is restored only in the limit of an infinite expansion. Symmetry breakdown is shown to occur in flat and closed universes when the mass term carries a wrong sign. The model has a naturally defined effective gravitational coupling coefficient which is rendered time-dependent due to the novel symmetry breakdown. It changes sign below a critical value of the cosmic scale factor indicating the onset of a repulsive field. The presence of the mass term severely alters the behaviour of ordinary matter and radiation in the early universe. The total energy density becomes negative in a certain domain. These features make possible a nonsingular cosm
Resumo:
A novel method of detecting the charge-carrying species in inorganic decomposable salts is described. In ammonium perchlorate it is observed that the charge-carrying species at temperatures 150 and 230°C are oppositely charged; i.e., they are negatively charged (ClO−4 ions) at 230°C and positively charged (H+ or NH+4) at 150°C.
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
An expression for the spectrum and cross spectrum of an acoustic field measured at two vertically separated sensors in shallow water has been obtained for any correlated noise sources distributed over the surface. Numerical results are presented for the case where the noise sources, white noise and wind-induced colored noise, are contained within a circular disk centered over the sensors. The acoustic field is generally inhomogeneous except when the channel is deep. The coherence function becomes real for a large disk, for a radius greater than 25 times the depth of the channel, decreases with further increase of the size of the disk, and finally tapers off after certain limiting size, approximately given by 1/alpha, where alpha is the attenuation coefficient.
Resumo:
A novel method of detecting the charge-carrying species in inorganic decomposable salts is described. In ammonium perchlorate it is observed that the charge-carrying species at temperatures 150 and 230°C are oppositely charged; i.e., they are negatively charged (ClO−4 ions) at 230°C and positively charged (H+ or NH+4) at 150°C.
Resumo:
Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.