179 resultados para Ore carriers.
Resumo:
The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Herein, we present six new lipopolymers based on low molecular weight, branched polyethylenimine (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and the redox state of ferrocene in the lipopolymers on the self assembly properties were investigated in detail by TEM, AFM, DLS and zeta potential measurements. The assemblies displayed an oxidation induced increase in the size of the aggregates. The co-liposomes comprising the lipopolymer and a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), showed excellent gene (pDNA) delivery capability in a serum containing environment in two cancer cell lines (HeLa and U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI (25 kDa) and were also significantly better than a commercial transfection reagent, Lipofectamine 2000 as evidenced from both the luciferase activity and GFP expression analysis. Oxidation of ferrocene in the lipopolymers led to drastically reduced levels of gene transfection which was substantiated by reduced cellular internalization of fluorescently labelled pDNA as detected using confocal microscopy and flow cytometry. Moreover, the transfection inactive oxidized lipopolyplexes could be turned transfection active by exposure to ascorbic acid (AA) in cell culture medium during transfection. Endocytosis inhibition experiments showed that gene expression mediated by reduced formulations involved both clathrin and caveolae mediated pathways while the oxidized formulations were routed via the caveolae. Cytotoxicity assays revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels in both the cell lines studied. Overall, we have exploited the redox activity of ferrocene in branched PEI-based efficient polymeric gene carriers whose differential transfection activities could be harnessed for spatial or temporal cellular transfections.
Resumo:
Lead tin telluride is one of the well-established thermoelectric materials in the temperature range 350-750 K. In the present study, Pb0.75-xMnxSn0.25Te1.00 alloys with variable manganese (Mn) content were prepared by solid state synthesis and the thermoelectric properties were studied. X-ray diffraction, (XRD) showed that the samples followed Vegard's law, indicating solid solution formation and substitution of Mn at the Pb site. Scanning Electron Microscopy (SEM) showed that the grain sizes varied from <1 mu m to more than 10 mu m and MnTe rich phase was present for higher Mn content. Seebeck coefficient, electrical resistivity and thermal conductivity were measured from room temperature to 720 K. At 300 K, large Seebeck values were obtained, possibly due to increased effective mass on Mn substitution and low carrier concentration of the samples. At higher temperatures, transition from n-type to p-type indicated the presence of thermally generated carriers. Temperature dependent electrical resistivity showed the transition from degenerate to non-degenerate behavior. For thermal conductivity, low values (similar to 1 W/m-K at 300 K) were obtained. At higher temperatures bipolar conduction was observed, in agreement with the Seebeck and resistivity data. Due to low power factor, the maximum thermoelectric figure of merit (zT) was limited to 0.23 at 329 K for the sample with lowest Mn content (x=0.03). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.
Resumo:
To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.
Resumo:
Growth of highly dense ZnO nanowires (ZnO NWs) is demonstrated on three-dimensional graphene foam (GF) using resistive thermal evaporation technique. Photoresponse of the as-grown hybrid structure of ZnO NWs on GF (ZnO NWs/GF) is evaluated for ultraviolet (UV) detection. Excellent photoresponse with fast response and recovery times of 9.5 and 38 s with external quantum efficiency of 2490.8% is demonstrated at low illumination power density of 1.3 mW/cm(2). In addition, due to excellent charge carrier transport, mobility of graphene reduces the recombination rate of photogenerated charge carriers, hence the lifetime of photogenerated free charge carriers enhances in the photodetectors.
Resumo:
Silver nanoparticles (AgNPs) find use in different biomedical applications including wound healing and cancer. We propose that the efficacy of the nanoparticles can be further augmented by using these particles for gene delivery applications. The objective of this work was to engineer biofunctionalized stable AgNPs with good DNA binding ability for efficient transfection and minimal toxicity. Herein, we report on the one-pot facile green synthesis of polyethylene glycol (PEG) stabilized chitosan-g-polyacrylamide modified AgNPs. The size of the PEG stabilized AgNPs was 38 +/- 4 nm with a tighter size distribution compared to the unstabilized nanoparticles which showed bimodal distribution of particle sizes of 68 +/- 5 nm and 7 +/- 4 nm. To enhance the efficiency of gene transfection, the Arg-Gly-Asp-Ser (RGDS) peptide was immobilized on the silver nanoparticles. The transfection efficiency of AgNPs increased significantly after immobilization of the RGDS peptide reaching up to 42 +/- 4% and 30 +/- 3% in HeLa and A549 cells, respectively, and significantly higher than 34 +/- 3% and 23 +/- 2%, respectively, with the use of polyethyleneimine (25 kDa). These nanoparticles were found to induce minimal cellular toxicity. Differences in cellular uptake mechanisms with RGDS immobilization resulting in improved efficiency are elucidated. This study presents biofunctionalized AgNPs for potential use as efficient nonviral carriers for gene delivery with minimal cytotoxicity toward augmenting the therapeutic efficacy of AgNPs used in different biomedical products.
Resumo:
We discuss here the crucial role of the particle network and its stability on the long-range ion transport in solid liquid composite electrolytes. The solid liquid composite electrolytes chosen for the study here comprise nanometer sized silica (SiO2) particles having various surface chemical functionalities dispersed in nonaqueous lithium salt solutions, viz, lithium perchlorate (LiClO4) in two different polyethylene glycol based solvents. These systems constitute representative examples of an independent class of soft matter electrolytes known as ``soggy sand'' electrolytes, which have tremendous potential in diverse electrochemical devices. The oxide additive acts as a heterogeneous dopant creating free charge carriers and enhancing the local ion transport. For long-range transport, however, a stable spanning particle network is needed. Systematic experimental investigations here reveal that the spatial and time dependent characteristics of the particle network in the liquid solution are nontrivial. The network characteristics are predominantly determined by the chemical makeup of the electrolyte components and the chemical interactions between them. It is noteworthy that in this study the steady state macroscopic ionic conductivity and viscosity of the solid liquid composite electrolyte are observed to be greatly determined by the additive oxide surface chemical functionality, solvent chemical composition, and solvent dielectric constant.
Resumo:
Mobile Ad hoc Networks (MANETs) are self-organized, infrastructureless, decentralized wireless networks consist of a group of heterogeneous mobile devices. Due to the inherent characteristics of MANE -Ts, such as frequent change of topology, nodes mobility, resource scarcity, lack of central control, etc., makes QoS routing is the hardest task. QoS routing is the task of routing data packets from source to destination depending upon the QoS resource constraints, such as bandwidth, delay, packet loss rate, cost, etc. In this paper, we proposed a novel scheme of providing QoS routing in MANETs by using Emergent Intelligence (El). The El is a group intelligence, which is derived from the periodical interaction among a group of agents and nodes. We logically divide MANET into clusters by centrally located static agent, and in each cluster a mobile agent is deployed. The mobile agent interacts with the nodes, neighboring mobile agents and static agent for collection of QoS resource information, negotiations, finding secure and reliable nodes and finding an optimal QoS path from source to destination. Simulation and analytical results show that the effectiveness of the scheme. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.ore/licenscs/by-nc-nd/4.0/). Peer-review under responsibility of the Conference Program Chairs
Resumo:
We report the photoresponse of stacked graphene layers towards infrared radiation. Graphene is stacked in two configurations, namely, crossed and parallel layers. Raman analysis demonstrated a strong interaction among the stacked graphene layers. Graphene in the crossed configuration exhibited the presence of both negative and positive conductivities; however, other configurations of graphene exhibited positive conductivity only. The presence of negative photoconductivity is proposed to be due to oxygen or oxygen-related functional group absorbents that are trapped in between two monolayers of graphene and act as scattering centers for free carriers. An interesting trend is reported in differential conductivity when stacked layers are compared with multilayers and parallel-stacked graphene layers.
Resumo:
Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO2 based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO3 (2.4-2.8 eV) and Bi2WO6 (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO3 CB and Bi2WO6 VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu2+ ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Heterostructures comprised of zinc oxide quantum dots (ZnO QDs) and graphene are presented for ultraviolet photodetectors (UV PD). Graphene-ZnO QDs-graphene (G-ZnO QDs-G) based PD demonstrated an excellent UV photoresponse with outstanding photoelastic characteristics when illuminated for several cycles with a periodicity 5 s. PD demonstrated faster detection ability with the response and recovery times of 0.29 s in response to much lower UV illumination. A direct variation in photoresponse is revealed with the bias voltage as well as UV illumination intensity. A drastic reduction in the dark current is noticed due to potential barrier formation between adjacent ZnO QDs and the recombination rate reduces by directly transferring photogenerated charge carriers from ZnO QDs to graphene for enhanced the charge mobility.
Resumo:
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Resumo:
High-kappa TiO2 thin films have been fabricated from a facile, combined sol-gel spin - coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO2 with a small grain size of 18 nm. The refractive index `n' quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 angstrom. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO2 were studied by capacitance - voltage (C - V) and deep level transient spectroscopy (DLTS). The flat - band voltage (V-FB) and the density of slow interface states estimated are -0.9, -0.44 V and 5.24x10(10), 1.03x10(11) cm(-2); for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross -sections measured by DLTS are E-V + 0.30, E-C - 0.21 eV; 8.73x10(11), 6.41x10(11) eV(-1) cm(-2) and 5.8x10(-23), 8.11x10(-23) cm(2) for the NMOS and PMOS structures, respectively. A low value of interface state density in both P-and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent. (C) 2015 Author(s).