155 resultados para Niobium compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium-ion batteries have been extensively pursued as economic alternatives to lithium-ion batteries. Investigating the polyanion chemistry, alluaudite structured Na2Fe2II(SO4)(3) has been recently discovered as a 3.8 V positive electrode material (Barpanda et al., Nature Commun., 5: 4358, 2014). Registering the highest ever Fe-III/Fe-II redox potential (vs. Na/Na+) and formidable energy density, it has opened up a new polyanion family for sodium batteries. Exploring the alluaudite family, here we report isotypical Na2+2xMn2-xII(SO4)(3) (x = 0.22) as a novel high-voltage cathode material for the first time. Following low-temperature (ca. 350 degrees C) solid-state synthesis, the structure of this new alluaudite compound has been solved adopting a monoclinic framework (s.g. C2/c) showing antiferromagnetic ordering at 3.4 K. Synergising experimental and ab initio DFT investigation, Na2+2xMn2-xII(SO4)(3) has been found to be a potential high-voltage (ca. 4.4 V) cathode material for sodium batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable batteries have propelled the wireless revolution and automobiles market over the past 25 years. Developing better batteries with improved energy density demands unveiling of new cathode ceramic materials with suitable diffusion channels and open framework structure. In this pursuit of achieving higher energy density, one approach is to realize enhanced redox voltage of insertion of ceramic compounds. This can be accomplished by incorporating highly electronegative anions in the cathode ceramics. Building on this idea, recently various sulphate- based compounds have been reported as high voltage cathode materials. The current article highlights the use of sulphate (SO4) based cathodes to realize the highest ever Fe3+/Fe2+ redox potentials in Li-ion batteries (LiFeSO4F fluorosulphate: 3.9V vs Li/Li+) and Na-ion batteries (Na2Fe2(SO4)(3) polysulphate: 3.8V vs Na/Na+). These sulphate-based cathode ceramic compounds pave way for newer avenues to design better batteries for future applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient azidation of 1,3-dicarbonyl compounds led to tertiary azides in the presence of tetrabutylammonium iodide (TBAI). TBAI is used as a pre-catalyst along with aq. tert-butyl hydroperoxide (TBHP) as an oxidant in aqueous medium. This operationally simple, practical, mild and green method provides an opportunity to synthesize a variety of azidated -keto esters, amides, and ketones in good yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out dielectric and transport measurements in NdFe1-xMnxO3 (0 <= x <= 1) series of compounds and studied the variation of activation energy due to a change in Mn concentration. Despite similar ionic radii in Mn3+ and Fe3+, large variation is observed in the lattice parameters and a crossover from dynamic to static Jahn-Teller distortion is discernible. The Fe/Mn-O-Fe/Mn bond angle on the ab plane shows an anomalous change with doping. With an increase in the Mn content, the bond angle decreases until x = 0.6; beyond this, it starts rising until x = 0.8 and again falls after that. A similar trend is observed in activation energies estimated from both transport and dielectric relaxation by assuming a small polaron hopping (SPH) model. Impedance spectroscopy measurements delineate grain and grain boundary contributions separately both of which follow the SPH model. Frequency variation of the dielectric constant is in agreement with the modified Debye law from which relaxation dispersion is estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the synthesis and photophysical properties of a star-shaped, novel, fluoranthene-tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation-induced blue-shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature-dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6-trinitrophenol (PA) with high sensitivity and a high Stern-Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70% water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70% exhibit high Stern-Volmer constants (K-sv=79998 and 51120m(-1), respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra-low-level detection of PA for real-time field analysis.