248 resultados para Negotiation Theory
Resumo:
A primary flexure problem defined by Kirchhoff theory of plates in bending is considered. Significance of auxiliary function introduced earlier in the in-plane displacements in resolving Poisson-Kirchhoffs boundary conditions paradox is reexamined with reference to reported sixth order shear deformation theories, in particular, Reissner's theory and Hencky's theory. Sixth order modified Kirchhoff's theory is extended here to include shear deformations in the analysis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recently three different experimental studies on ultrafast solvation dynamics in monohydroxy straight-chain alcohols (C-1-C-4) have been carried out, with an aim to quantify the time constant (and the amplitude) of the ultrafast component. The results reported are, however, rather different from different experiments. In order to understand the reason for these differences, we have carried out a detailed theoretical study to investigate the time dependent progress of solvation of both an ionic and a dipolar solute probe in these alcohols. For methanol, the agreement between the theoretical predictions and the experimental results [Bingemann and Ernsting J. Chem. Phys. 1995, 102, 2691 and Horng et al. J: Phys, Chern, 1995, 99, 17311] is excellent. For ethanol, propanol, and butanol, we find no ultrafast component of the time constant of 70 fs or so. For these three liquids, the theoretical results are in almost complete agreement with the experimental results of Horng et al. For ethanol and propanol, the theoretical prediction for ionic solvation is not significantly different from that of dipolar solvation. Thus, the theory suggests that the experiments of Bingemann and Ernsting and those of Horng et al. studied essentially the polar solvation dynamics. The theoretical studies also suggest that the experimental investigations of Joo et al. which report a much faster and larger ultrafast component in the same series of solvents (J. Chem. Phys. 1996, 104, 6089) might have been more sensitive to the nonpolar part of solvation dynamics than the polar part. In addition, a discussion on the validity of the present theoretical approach is presented. In this theory the ultrafast component arises from almost frictionless inertial motion of the individual solvent molecules in the force field of its neighbors.
Resumo:
We review some advances in the theory of homogeneous, isotropic turbulence. Our emphasis is on the new insights that have been gained from recent numerical studies of the three-dimensional Navier Stokes equation and simpler shell models for turbulence. In particular, we examine the status of multiscaling corrections to Kolmogorov scaling, extended self similarity, generalized extended self similarity, and non-Gaussian probability distributions for velocity differences and related quantities. We recount our recent proposal of a wave-vector-space version of generalized extended self similarity and show how it allows us to explore an intriguing and apparently universal crossover from inertial- to dissipation-range asymptotics.
Resumo:
This paper investigates the propagation of a strong shock into an inhomogeneous medium using the new theory of shock dynamics. The equations are simple to solve and involve no trial-and-error method commonly used in this case. The results compare favourably with earlier results obtained in the case of self-similar flows, which arise as a special case of this theory.
Resumo:
In recent years, parallel computers have been attracting attention for simulating artificial neural networks (ANN). This is due to the inherent parallelism in ANN. This work is aimed at studying ways of parallelizing adaptive resonance theory (ART), a popular neural network algorithm. The core computations of ART are separated and different strategies of parallelizing ART are discussed. We present mapping strategies for ART 2-A neural network onto ring and mesh architectures. The required parallel architecture is simulated using a parallel architectural simulator, PROTEUS and parallel programs are written using a superset of C for the algorithms presented. A simulation-based scalability study of the algorithm-architecture match is carried out. The various overheads are identified in order to suggest ways of improving the performance. Our main objective is to find out the performance of the ART2-A network on different parallel architectures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We study phase transitions in the colossal-magnetoresistive manganites by using a mean-field theory both at zero and non-zero temperatures. Our Hamiltonian includes double-exchange, superexchange, and Hubbard terms with on-site and nearest-neighbour Coulomb interaction, with the parameters estimated from earlier density-functional calculations. The phase diagrams show magnetic and charge-ordered (or charge-disordered) phases as a result of the competition between the double-exchange, superexchange, and Hubbard terms, the relative effects of which are sensitively dependent on parameters such as doping, bandwidth, and temperature. In accord with the experimental observations, several important features are reproduced from our model, namely, (i) a phase transition from an insulating, charge-ordered antiferromagnetic to a metallic, charge-disordered ferromagnetic state near dopant concentration x = 1/2, (ii) the reduction of the transition temperature TAF-->F by the application of a magnetic field, (iii) melting of the charge order by a magnetic field, and (iv) phase coexistence for certain values of temperature and doping. An important feature, not reproduced in our model, is the antiferromagnetism in the electron-doped systems, e.g., La1-xCaxMnO3 over the entire range of 0.5 less than or equal to x less than or equal to 1, and we suggest that a multi-band model which includes the unoccupied t(2g) orbitals might be an important ingredient for describing this feature.
Resumo:
The design and development of nonresonant edge slot antenna for phased array applications has been presented. The radiating element is a slot cut on the narrow wall of rectangular waveguide (edge slot). The admittance characteristics of the edge slot have been rigorously studied using a novel hybrid method. Nonresonant arrays have been fabricated using the present slot characterization data and the earlier published data. The experimentally measured electrical characteristics of the antenna are presented which clearly brings out the accuracy of the present method.
Resumo:
We discuss a recently formulated microscopic theory of the unusual coexistence of spin density waves (SDWs) and charge density waves (CDWs) that has been seen in recent experiments on (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4.
Resumo:
Recent experiments indicate that the spin-density waves (SDWs) in (TMTTF)(2)Br, (TMTSF)(2)PF6, and alpha-(BEDT-TTF)(2)MHg(SCN)(4) are highly unconventional and coexist with charge-density waves (CDWs). We present a microscopic theory of this unusual CDW-SDW coexistence. A complete understanding requires the explicit inclusion of strong Coulomb interactions, lattice discreteness, the anisotropic two-dimensional nature of the lattice, and the correct hand filling within the starting Hamiltonian. [S0031-9007(99)08498-7].
Resumo:
Closed form solutions for a simultaneously AM and high-harmonic FM mode locked laser system is presented. Analytical expressions for the pulsewidth and pulsewidth-bandwidth products are derived in terms of the system parameters. The analysis predicts production of 17 ps duration pulses in a Nd:YAG laser mode locked with AM and FM modulators driven at 80 MHz and 1.76 GHz for 1 W modulator input power. The predicted values of the pulsewidth-bandwidth product lie between the values corresponding to the pure AM and FM mode locking values.
Resumo:
An approach to the constraint counting theory of glasses is applied to many glass systems which include an oxide, chalcohalide, and chalcogenides. In this, shifting of the percolation threshold due to noncovalent bonding interactions in a basically covalent network and other recent extensions of the theory appear natural. This is particularly insightful and reveals that the chemical threshold signifies another structural transition along with the rigidity percolation threshold, thus unifying these two seemingly disparate toplogical concepts. [S0163-1829(99)11441-3].
Resumo:
We consider the Finkelstein action describing a system of spin-polarized or spinless electrons in 2+2epsilon dimensions, in the presence of disorder as well as the Coulomb interactions. We extend the renormalization-group analysis of our previous work and evaluate the metal-insulator transition of the electron gas to second order in an epsilon expansion. We obtain the complete scaling behavior of physical observables like the conductivity and the specific heat with varying frequency, temperature, and/or electron density. We extend the results for the interacting electron gas in 2+2epsilon dimensions to include the quantum critical behavior of the plateau transitions in the quantum Hall regime. Although these transitions have a very different microscopic origin and are controlled by a topological term in the action (theta term), the quantum critical behavior is in many ways the same in both cases. We show that the two independent critical exponents of the quantum Hall plateau transitions, previously denoted as nu and p, control not only the scaling behavior of the conductances sigma(xx) and sigma(xy) at finite temperatures T, but also the non-Fermi-liquid behavior of the specific heat (c(v)proportional toT(p)). To extract the numerical values of nu and p it is necessary to extend the experiments on transport to include the specific heat of the electron gas.
Resumo:
We consider the breaking of a polymer molecule which is fixed at one end and is acted upon by a force at the other. The polymer is assumed to be a linear chain joined together by bonds which satisfy the Morse potential. The applied force is found to modify the Morse potential so that the minimum becomes metastable. Breaking is just the decay of this metastable bond, by causing it to go over the barrier. Increasing the force causes the potential to become more and more distorted and eventually leads to the disappearance of the barrier. The limiting force at which the barrier disappears is D(e)a/2,D-e with a the parameters characterizing the Morse potential. The rate of breaking is first calculated using multidimensional quantum transition state theory. We use the harmonic approximation to account for vibrations of all the units. It includes tunneling contributions to the rate, but is valid only above a certain critical temperature. It is possible to get an analytical expression for the rate of breaking. We have calculated the rate of breaking for a model, which mimics polyethylene. First we calculate the rate of breaking of a single bond, without worrying about the other bonds. Inclusion of other bonds under the harmonic approximation is found to lower this rate by at the most one order of magnitude. Quantum effects are found to increase the rate of breaking and are significant only at temperatures less than 150 K. At 300 K, the calculations predict a bond in polyethylene to have a lifetime of only seconds at a force which is only half the limiting force. Calculations were also done using the Lennard-Jones potential. The results for Lennard-Jones and Morse potentials were rather different, due to the different long-range behaviors of the two potentials. A calculation including friction was carried out, at the classical level, by assuming that each atom of the chain is coupled to its own collection of harmonic oscillators. Comparison of the results with the simulations of Oliveira and Taylor [J. Chem. Phys. 101, 10 118 (1994)] showed the rate to be two to three orders of magnitude higher. As a possible explanation of discrepancy, we consider the translational motion of the ends of the broken chains. Using a continuum approximation for the chain, we find that in the absence of friction, the rate of the process can be limited by the rate at which the two broken ends separate from one another and the lowering of the rate is at the most a factor of 2, for the parameters used in the simulation (for polyethylene). In the presence of friction, we find that the rate can be lowered by one to two orders of magnitude, making our results to be in reasonable agreement with the simulations.