184 resultados para Molecular Epidemiology
Resumo:
HeI photoelectron spectra of 1:1 electron donor-acceptor complexes are discussed in the light of molecular orbital calculations. The complexes discussed include those formed by BH3, BF3 and SO2. Some systematics have been found in the ionization energy shifts of the complexes compared to the free components and these are related to the strength of the donor-acceptor bond. Hel spectra of hydrogen bonded complexes are discussed in comparison with results from MO calculations. Limitations of such studies as well as scope for further investigations are indicated.
Resumo:
CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.
Resumo:
Mononuclear, binuclear and trinuclear silver(l) complexes were obtained unexpectedly while probing the reactivity of diphosphazane ligands of the type X2PN(Pr-i)PXY towards the ruthenium-based precursor Ru(bipy)(2)Cl-2 center dot 2H(2)O, in the presence of a silver salt as a chloride scavenger. Subsequently, the reactions of AgX [X = Cl, NO3 or CF3SO3] with Ph2PN(R)PPh(Y) [R = H, Y = Ph; R = Pr-i, Y = Ph or OC6H3Me2-2,6] in a 1: 1 or 1:2 molar ratio have been investigated. Mononuclear or binuclear Ag(I) complexes containing either chelating or bridging diphosphazane ligands are obtained. Trinuclear silver(l) complexes are accessible by the treatment of diphosphazane ligands, Ph2PN(R)PPh2 [R = H, Pr-i] with AgCl using piperidine as the solvent. In the presence of a suitable chloride donor species, the mononuclear and binuclear complexes of Ph2PN(Pr-i)PPh2 are transformed slowly to the trinuclear complex [Ag-3(mu-Cl)(2){Ph2PN(Pr-i)PPh2}(3)]X, over a period 20 h. The structures of representative complexes have been confirmed by X-ray crystallography and the salient structural features are discussed
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by expansion of GAA repeats in the frataxin gene. We have carried out the first molecular analysis at the Friedreich's ataxia locus in the Indian population. Materials and methods - Three families clinically diagnosed for Friedreich's ataxia were analyzed for GAA expansion at the FRDA locus. The distribution of GAA repeats was also estimated in normal individuals of Indian origin. Results - All patients clinically diagnosed for Friedreich's ataxia were found to be homozygous for GAA repeat expansion. The GAA repeat in the normal population show a bimodal distribution with 94% of alleles ranging from 7-16 repeats. Conclusion - Indian patients with expansion at the FRDA locus showed typical clinical features of Friedreich's ataxia. The low frequency of large normal alleles (6%) could indicate that the prevalence of this disease in the Indian population is likely to be low.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
The molecular and crystal structures of 4-ethynylcyanobenzene arereported. The packing of molecules in the crystal is found to be homologous with the crystal structures of HCN, cyanoacetylene and 4-cyano-4'-ethynylbiphenyl. Alternatively, these four crystals could be said to constitute a structural homologous series. The influence of C-H center dot center dot center dot N hydrogen bonding in directing a linear supramolecular arrangement of molecules with ethynyl and cyano groups at opposite ends, is illustrated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.
Resumo:
C---H…X hydrogen bonded systems are studied by the STO-3G method. The proton donor ability of carbon is analysed in terms of its hybridization states and the substituents.
Resumo:
Chlorine has been substituted at the 2- and 4-positions in the pyridine and quinoline rings of the corresponding N-oxides and 35Cl n.q.r. spectra have been studied in the temperature range 77–300 K. The change in the n.q.r. frequencies in N-oxides as compared to their parent compounds are interpreted in terms of the conjugative effect and the inductive effect of the N+—O– group. The negative temperature coefficients of the resonance frequencies in chloropyridine-N-oxides have been analysed using the Bayer, Kushida and Brown equations. The calculated torsional frequencies, which are in the range 52–78 cm–1, are found to be only slightly temperature dependent.
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.