198 resultados para Microwave-assisted Solvothermal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripherally triarylborane decorated porphyrin (2) and its Zn(II) complex (3) have been synthesized. Compound 3 contains of two different Lewis acidic binding sites (Zn(II) and boron center). Unlike all previously known triarylborane based sensors, the optical responses of 3 toward fluoride and cyanide are distinctively different, thus enabling the discrimination of these two interfering anions. Metalloporphyrin 3 shows a multiple channel fluorogenic response toward fluoride and cyanide and also a selective visual colorimetric response toward cyanide. By comparison with model systems and from detailed photophysical studies on 2 and 3, we conclude that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from borane to porphyrin core and with negligible negetive cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g., Zn-TPP and TPP). Compounds 2 and 3 were also found to be capable of extracting fluoride from aqueous medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present digestive ripening facilitated interatomic diffusion for the phase controlled synthesis of homogeneous intermetallic nanocrystals of Au-Sn system. Au and Sn metal nanoparticles synthesized by a solvated metal atom dispersion (SMAD) method are employed as precursors for the fabrication of AuSn and Au5Sn which are Au-rich Au-Sn intermetallic nanocrystals. By optimizing the stoichiometry of Au and Sn in the reaction mixture, and by employing growth directing agents, the formation of phase pure intermetallic AuSn and Au5Sn nanocrystals could be realized. The as-prepared Au and Sn colloidal nanoparticles and the resulting intermetallic nanocrystals are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM and STEM-EDS), and optical spectroscopy. The results obtained here demonstrate the potential of solution chemistry which allows synthesizing phase pure Au-Sn intermetallics with tailored morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation g(2)(tau)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth M(tau)], introduced by the ultrasound forcing in the focal volume selected, on g(2)(tau). The modulation depth M(tau(i)) at any delay time tau(i) can be measured by short-time Fourier transform of g(2)(tau) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M(tau) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(omega), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(omega) corresponding to these regions from the measured region specific M(tau(i))vs tau(i). The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of tau, the match was good only in the initial transients in regard to experimental measurements with ultrasound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic molecules adsorbed on magnetic surfaces offer the possibility to merge the concepts of molecular electronics with spintronics to build future nanoscale data storage, sensing, and computing multifunctional devices. In order to engineer the functionalities of such hybrid spintronic devices, an understanding of the electronic and magnetic properties of the interface between carbon-based aromatic materials and magnetic surfaces is essential. In this article, we discuss recent progress in the study of spin-dependent chemistry and physics associated with the above molecule-ferromagnet interface by combining state-of-the-art experiments and theoretical calculations. The magnetic properties such as molecular magnetic moment, electronic interface spin-polarization, magnetic anisotropy, and magnetic exchange coupling can be specifically tuned by an appropriate choice of the organic material and the magnetic substrate. These reports suggest a gradual shift in research toward an emerging subfield of interface-assisted molecular spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites of xSrFe(12)O(19)-(1-x) BaTiO3 where x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1were prepared by Sol gel method and consequently densified at 1100 degrees C/90 min using microwave sintering method. The phase formation and diphase microstructure of the composite samples was examined by X-ray diffraction and field emission electron microscope (FESEM), respectively. The effects of constituent phase variation on the ferroelecrric, dielectric and magnetic properties were examined. It was observed that with a decrease of x, the Curie temperature shifted towards low temperature side. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent dependent and low temperature based Chalcopyrite CuIn1-xAlxS2 (CIAS) nano structures were synthesized by a simple one-pot solvothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy and micro-Raman spectroscopy were used to characterize the nanostructures structurally and optically. CIAS hollow spheres were constructed from the nanoplates. Detailed formation mechanism of the hollow spheres was explained. Tentative optical phonon vibrational modes have been discussed. Steady state room temperature IR photodectection have been demonstrated with all the CIAS nanostructures under IR lamp illumination. Photo current was amplified by two orders and one order in case of nano needle like structures and hollow spheres respectively, which was explained based upon the trap assisted space charge. Growth and decay constants lasted for few milli seconds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed `form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device. (C) 2014 AIP Publishing LLC.