170 resultados para Maruanum Ceramics
Resumo:
Stoichiometric and non-stoichiometric powder mixtures of Ti-B4C and Ti-C with 1 wt% Ni were reactively hot pressed at 40 MPa, 1200 degrees C for 30 min. In both systems, the combined presence of Ni and non-stoichiometry enabled complete densification. While in Ti-C, non-stoichiometry by itself plays a significant role in promoting densification, the formation of intermediate borides in Ti-B4C powder mixtures requires the additional presence of Ni which promotes full reaction through the formation of a transient liquid as established previously in Ti-BN powder mixtures.
Resumo:
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The most important property of a bone cement or a bone substitute in load bearing orthopaedic implants is good integration with host bone with reduced bone resorption and increased bone regeneration at the implant interface. Long term implantation of metal-based joint replacements often results in corrosion and particle release, initiating chronic inflammation leading onto osteoporosis of host bone. An alternative solution is the coating of metal implants with hydroxyapatite (HA) or bioglass or the use of bulk bioglass or HA-based composites. In the above perspective, the present study reports the in vivo biocompatibility and bone healing of the strontium (Sr)-stabilized bulk glass ceramics with the nominal composition of 4.5SiO(2)-3Al(2)O(3)-1.5P(2)O(5)-3SrO-2SrF(2) during short term implantation of up to 12 weeks in rabbit animal model. The progression of healing and bone regeneration was qualitatively and quantitatively assessed using fluorescence microscopy, histological analysis and micro-computed tomography. The overall assessment of the present study establishes that the investigated glass ceramic is biocompatible in vivo with regards to local effects after short term implantation in rabbit animal model. Excellent healing was observed, which is comparable to that seen in response to a commercially available implant of HA-based bioglass alone. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.
Resumo:
Microstereolithography (MSL) is a rapid prototyping technique to fabricate complex three-dimensional (3D) structure in the microdomain involving different materials such as polymers and ceramics. The present effort is to fabricate microdimensional ceramics by the MSL system from a non-aqueous colloidal slurry of alumina. This slurry predominantly consists of two phases i.e. sub-micrometer solid alumina particles and non-aqueous reactive difunctional and trifunctional acrylates with inert diluent. The first part of the work involves the study of the stability and viscosity of the slurry using different concentrations of trioctyl phosphine oxide (TOPO) as a dispersant. Based on the optimization, the highest achievable solid loadings of alumina has been determined for this particular colloidal suspension. The second part of the study highlights the fabrication of several micro-dimensional alumina structures by the MSL system. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Solution combustion synthesis technique was adopted to synthesize V2O5, and Mo doped phases, The as-synthesized V2O5, has been reduced by a novel reduction technique to form VO2 typephase. The monophasic nature of the samples as revealed by XRD data and systematic shift in peak position indicated solid solubility up to 2 at % of Mo in VO2 lattice. The crystallite size was found to similar to 40 nm. Particle size measurement carried out using Transmission electron microscope ( TEM) agreed with XRD experiments. Scanning electron microscope revealed the morphology of the particles to be plate like and bimodal. Variation in the metal- insulator transition temperature as a function of doping was investigated by 4-probe electrical resistivity measurement on sintered ceramics.
Resumo:
A series of ferrite samples with the compositional formula, Ni0.5Co0.5-xZnxFe2O4 (0 <= x <= 0.5), was prepared using the citrate based sol gel method for the better understanding of zinc doping on the structural and magnetic properties. The Rietveld-refined X-ray diffraction data revealed that the samples are having cubic structure with the Fd-3m space group. The lattice parameter increased linearly with increasing Zn content. The surface morphology and stoichiometric ratio of the compositional elements were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS). EDS showed that the elemental ratios were stoichiometric. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Zn concentration up to x=0.3 and a decrease thereafter. These results could be explained using Neel's collinear two-sub-lattice model and three-sub-lattice non-collinear model suggested by Yafet and Kittel. The magnetic cubic anisotropy constant determined by the law of approach to saturation decreased with increasing Zn content. The underlying mechanism behind observed behavior was discussed qualitatively. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Alumina thin films were deposited on titanium (Ti) and fused quartz by both direct and reactive pulsed rf magnetron sputtering techniques. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy were utilized to study the phases and surface morphology of the films. The as-deposited alumina thin films were amorphous. However, after annealing at 500 degrees C in vacuum, the crystalline peaks corresponding to the Theta (0), Delta (8) and Chi ()) alumina phases were obtained. The optical transmittance and reflectance as well as IR emittanc,e data were also evaluated for the thin films. The transmittance, e.g., (similar to 90%) of the bare quartz substrate was not changed even when the alumina thin films were deposited for an hour. However, further increase in deposition time (e.g., 7 h) of the alumina thin films showed only a marginal decrease (e.g., similar to 5%) in average transmittance of the bare quartz substrate. The direct and indirect optical band gaps and extinction coefficient of the alumina films were estimated from the transmittance spectra. The IR emittance of the Ti substrate (e.g., similar to 16%) was almost constant after depositing alumina thin films for an hour. Further increase in deposition time showed only a marginal increase (e.g., similar to 9%) in IR emittance value. Therefore, it is proposed that the alumina films developed in the present work can act as a protective cover for the Ti substrate while retaining the thermo-optical properties of the same. The nanohardness and Young's modulus of the alumina thin films were evaluated by the novel nanoindentation technique. The nanohardness was measured as similar to 6 GPa. Further, Young's modulus was evaluated as similar to 116 GPa. The magnitudes of the nanomechanical properties of the thin films were a little smaller than those reported in the literature. This was linked to the lack of crystalline phases in the as-deposited alumina thin films. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The authors prepared (1 - x) BiFeO3 - (x)Pb(Zr0.52Ti0.48)O-3 for x <= 0.30 by sol-gel method and investigated the material's structures, magnetic and electrical properties. Detailed Rietveld analysis of X-ray diffraction data revealed that the system retains distorted rhombohedral R3c structure for x <= 0.10 but transforms to monoclinic (Cc) structure for x > 0.10. Disappearance of some Raman modes corresponding to A1 modes and the decrease in the intensities of the remaining A1 modes with increasing x in the Raman spectra, which is a clear indication of structural modification and symmetry changes brought about by PZT doping. Enhanced magnetization with PZT doping content may be attributed to the gradual change and destruction in the spin cycloid structure of BiFeO3. The leakage current density at 3.5 kV/cm was reduced by approximately three orders of magnitude by doping PZT (x = 0.30), compared with BFO ceramics. (C) 2014 AIP Publishing LLC.
Resumo:
Given the recent reports pertaining to novel optical properties of ultra-small quantum dots (QDs) (r <2 nm), this nanomaterial is of relevance to both technology and science. However it is well known that in these size regimes most chalocogenide QD dispersions are unstable. Since applications often require use of QD dispersions (e.g. for deployment on a substrate), stabilizing these ultra-small particles is of practical relevance. In this work we demonstrate a facile, green, solution approach for synthesis of stable, ultra-small ZnO QDs having radius less than 2 nm. The particle size is calculated using Brits' equation and confirmed by transmission electron micrographs. ZnO QDs reported remain stable for > 120 days in ethanol (at similar to 298-303 K). We report digestive ripening (DR) in TEA capped ZnO QDs; this occurs rapidly over a short duration of 5 min. To explain this observation we propose a suitable mechanism based on the Lee's theory, which correlates the tendency of DR with the observed zeta potentials of the dispersed medium. To the best of our knowledge this is the (i) first report on DR in oxide QDs, as well as the first direct experimental verification of Lee's theory, and (ii) most rapid DR reported so far. The facile nature of the method presented here makes ultra-small ZnO readily accessible for fundamental exploration and technologically relevant applications. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.
Resumo:
Significant progress in understanding the mechanical behavior of metallic glasses (MGs) was made over the past decade, particularly on mechanisms of plastic deformation. However, recent research thrust has been on exploring the mechanics and physics of fracture. MGs can be very brittle with K-Ic values similar to silicate glasses and ceramics or very tough with K-Ic akin to high toughness crystalline metals. Even the tough MGs can become brittle with structural relaxation following annealing at temperatures close to glass transition temperature (T-g). Detailed experimental studies coupled with complementary numerical simulations of the recent past have provided insights on the micromechanisms of failure as well as nature of crack tip fields, and established the governing fracture criteria for ductile and brittle glasses. In this paper, the above advances are reviewed and outstanding issues in the context of fracture of amorphous alloys that need to be resolved are identified.
Resumo:
The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.