161 resultados para MOLECULAR-WEIGHT MEASUREMENTS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A family of high molecular weight castor oil (CO)-based biodegradable polyanhydrides was synthesized by a catalyst-free melt-condensation reaction between prepolymers of CO and sebacic acid (SA). The structure of the polymers was characterized by H-1 NMR and Fourier transform infrared spectroscopy, which indicated the formation of the anhydride bond along the polymer backbone. Thermal analysis and X-ray diffraction confirmed the semicrystalline nature of the polymers. Incorporation of SA enhanced the crystallinity of the polymer. The hydrophobic nature of these polymers was revealed by contact angle goniometry. Water wettability decreased with increase in SA content. Compressive tests demonstrated a sharp increase in strength and decrease in ductility with increasing SA content. In vitro hydrolytic degradation studies indicated surface-eroding behavior. The degradation rate decreased with an increase of SA content in the polymers because of increased crystallinity. The release studies of both hydrophobic and hydrophilic dyes followed zero-order kinetics. In vitro cell studies to assess the cytotoxicity of the polymer confirmed minimal toxicity of the degradation products. Thus, a family of CO-SA polyanhydrides have been synthesized and characterized for controlled release applications where the physical, mechanical, and degradation kinetics can be modulated by varying the weight fraction of the prepolymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dilution cum purge ejector for application in fuel cells represents a domain of ejector operation involving low entrainment ratio with differing secondary and primary gas; which is hardly investigated and a cohesive design framework is not readily available. We comprehensively study a constant area ejector using analytical, experimental and numerical tools at low entrainment ratio (0.004-0.065) with Air, Helium and Argon as secondary gas while the primary gas is Air. For the first time, limits of operating parameters used in control volume method to design the ejector are found to be highly dependent on the secondary molecular weight. The entrainment ratio in the ejector (low for Helium and high for Argon) is affected by the molecular weight and the static pressure within the ejector (low for Air and high for Argon & Helium) by the gamma of the secondary gas. Sufficient suction pressure (0.3-0.55 bar) is generated by the ejector thereby preventing any backflow of secondary gas at all primary stagnation pressures (1.5, 2.2 and 3.1 bar). Numerical results agree well with experimental results. The ejector is shown to completely dilute and purge the secondary flow, meeting all key design requirements. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The synthesis of high molecular weight esters such as bis (2-ethylhexyl) sebacate is of significance for its use as a lubricant. This ester is synthesized by the transesterification of dimethyl sebacate with 2-ethylhexanol. Therefore, the solubilities of bis (2-ethylhexyl) sebacate and dimethyl sebacate were determined at 308-328 K at pressures of 10-18 MPa in supercritical carbon dioxide. The solubility of dimethyl sebacate was always higher than bis (2-ethylhexyl) sebacate at a given temperature and pressure. The Mendez-Teja model was used to verify the self-consistency of data. Further, a new semi-empirical model with three parameters was developed using the solution theory coupled with Wilson activity coefficient. This model was used to correlate the experimental data of this work and solubilities of many high molecular weight esters reported in the literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (alpha/beta)(8) TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Methods: Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Results: Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a T-m of 44 degrees C and a Gibbs free energy of unfolding (Delta G degrees) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a C-m of 1.6 M and a Delta G degrees of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra. However, the HSQC spectrum revealed somewhat molten characteristics. Conclusions: Despite the detection of molten characteristics, the creation of a soluble, cooperatively folding protein represents an advancement over previous attempts at TIM barrel design. Strategies to further improve Symmetrin-1 are elaborated. Our techniques may be used to create other large, internally symmetric proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ER alpha) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5 +/- 0.5 degrees C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ER alpha, antibody recognized two protein bands with apparent molecular weight similar to 55 and similar to 45 kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ER alpha. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ER alpha in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ER alpha immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ER alpha in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ER alpha in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new TPE based low molecular weight gelator (LMWG) which displays both AIE and MCIE phenomena in gel state has been synthesized. LMWG self-assembles to form 1D nanofibers which undergo morphology transformation to coordination polymer gel (CPG) nanotubes upon metal ion coordination. CPG shows enhanced mechanical stability along with tunable emission properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lack of an efficient and safe carrier is a major impediment in the field of gene therapy. Although gelatin (GT), a naturally derived polymer, is widely used in drug delivery applications, it is unable to bind DNA efficiently. In this study, a novel polycationic gene carrier was prepared by conjugation of low molecular weight polyethyleneimine (LPEI) with GT through 4-bromonaphthaleic anhydride as a coupling agent to avoid self crosslinking. Self-assembly of LPEI conjugated GT (GT-LPEI) with plasmid DNA (pDNA) yielded nanoparticles with high gene complexation ability to form similar to 250 nm cylindrical nanoparticles with a zeta potential of similar to 27 mV. GT-LPEI showed exceptionally high transfection efficiency (> 90%) in various mammalian cells including primary stem cells with minimal cytotoxicity. The transfection efficiency of GT-LPEI significantly surpassed that of many commercial reagents. The high gene transfection expression was confirmed in vivo. Thus, GT-LPEI is shown to be a promising nonviral carrier for potential use in gene therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A low molecular weight sulfated chitosan (SP-LMWSC) was isolated from the cuttlebone of Sepia pharaonis. Elemental analysis established the presence of C, H and N. The sulfation of SP-LMWSC was confirmed by the presence of characteristic peaks in FT-IR and FT-Raman spectra. The thermal properties of SP-LMWSC were studied by thermogravimetric analysis and differential scanning calorimetry. Electrolytic conductivity of SP-LMWSC was measured by cyclic voltammetry and the molecular weight was determined by MALDI-TOF/MS. The molecular structure and sulfation sites of SP-LMWSC were unambiguously confirmed using H-1,C-13, 2D COSY and 2D HSQC NMR spectroscopy. SP-LMWSC exhibited increased anticoagulant activity in avian blood by delaying coagulation parameters and displayed cytostatic activity by inhibiting the migration of avian leucocytes. SP-LMWSC demonstrated avian antiviral activity by binding to Newcastle disease virus receptors at a low titer value of 1/64. These findings suggested that SP-LMWSC isolated from an industrial discard holds immense potentials as carbohydrate based pharmaceuticals in future. (C) 2015 Elsevier B.V. All rights reserved.