209 resultados para Ionic-conductivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts and theoretical origins of conduction domains for solid electrolytes and electrode polarization are outlined briefly. The point electrode made of the ' solid electrolyte material is useful for deflecting the semipermeability flux away from the electrode. The emf of galvanic sensors consisting of two solid electrolytes in intimate contact with each other and in which transport occurs by a common ion is reviewed. The voltage of such cells depends on the chemical potential of the active species at the interface between the two electrolytes, which can be evaluated from the transport properties of electrolytes using a numerical procedure. The factors governing the speed of response of solid electrolyte gas sensors are analyzed. A rigorous expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for nonisothermal galvanic sensors are outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. The principles of operation of galvanic sensors for oxygen, sulphur, oxides of sulphur (SOx,x=2,3), carbon, oxides uf carbon (COx,x= 1,2), oxides of nitrogen (NOx,x= 1,2) and silicon are discussed. The use of auxiliary electrodes in galvanic sensors to expand the detection capability of known solid electrolytes to a large number of species is explained with reference to sensors for sulphur and oxides of sulphur (SOx,x=2,3).Finally the cause of the common errors in galvanic measurements and test for the correct functioning of galvanic sensors is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure, thennal expansion and electrical conductivity of the solid solutions YOgCao.2Fel-x MnxOJ+c5 (0 ~ x ~ 1.0) were investigated. All compositions had the GdFeOrtype orthorhombic perovskite structure with trace amounts of a second phase present in case of x = 0.8 and 1.0. The lattice parameters were detennined at room tempe'rature by using X-ray powder diffraction (XRPD). The pseudocubic lattice constant decreased with increasing x. The average I inear thermal expansion coefficient (anv) in the temperature range from 673 to 973 K showed negligible change with x up to x = 0.4. The thennal expansion curve for x = I had a slope approaching zero in the temperature range from 648 to 948 K. The calculated activation energy values for electrical conduction indicate that conduction occurs primarily by the small polaron hopping mechanism. The drastic drop in electrical conductivity for a small addition of Mn (0 ~ x ~ 0.2) is caused by the preferential fonnation of Mn4t ion~ (rather than Fe4 +) which act as carrier traps. This continues till the charge compensation for the divalent ions on the A-site is complete. The results indicate that with further increase in manganese content (beyond x =0.4) in the solid solutions, there is an increase in exc :::ss oxygen and consequently, a small increase in Mn'll il>I1~, which are charge compensated by the formation of cation vancancies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense (Ba1―xLax)2In2O5+x (BLIO) electrolytes with different compositions (x = 0.4, 0.5, 0.6) were fabricated using powders obtained by the Pechini method. The formation of BLIO powders was investigated by using X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The calcination temperature and time were optimized. The sintered (Ba1―xLax)2In2O5+x electrolytes showed a relative density greater than ∼97%, and the major phase of three electrolyte compositions was indexed as a cubic perovskite. The electrical conductivity of BLIO ceramics at elevated temperatures in air was measured by ac-impedance spectroscopy. The activation energies for conduction in BLIO were 102 kJ mol―1 between 473 and 666 K and 118 kJ mol―1 between 769 and 873 K, which are comparable to that for 8 mol % yttria-stabilized cubic zirconia. Mixed-potential gas sensors utilizing BLIO-based electrolytes exhibited good sensitivity to different CO concentrations from ∼100 to ∼500 ppm and excellent selectivity to methane at around 873 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification of Ag‐53 at. % Se alloy resulted in the formation of a composite mixture of Ag2.5Se and Se. The microstructure consists of spherical Se grains of 2–20 μm size, randomly distributed in a matrix of Ag2.5 Se. The Se grains were found to be layered hexagonal while the Ag2.5 Se had an orthorhombic crystal structure. The unit cell size of this phase, however, was twice that reported for the equilibrium orthorhombic Ag2 Se compound. The conductivity σ variation with temperature in the range 80–320 K was found to be similar to that observed in degenerate semiconductors. The σ decreased from 295 Ω−1 cm−1 at room temperature to a saturation value of 70 Ω−1 cm−1 for temperatures <80 K. The results are discussed in terms of percolation conduction in the Ag2.5 Se phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer-metal composites are soft artificial muscle-like bending actuators, which can work efficiently in wet environments such as water. Therefore, there is significant motivation for research on the development and design analysis of ionic polymer-metal composite based biomimetic underwater propulsion systems. Among aquatic animals, fishes are efficient swimmers with advantages such as high maneuverability, high cruising speed, noiseless propulsion, and efficient stabilization. Fish swimming mechanisms provide biomimetic inspiration for underwater propulsor design. Fish locomotion can be broadly classified into body and/or caudal fin propulsion and median and/or paired pectoral fin propulsion. In this article, the paired pectoral fin-based oscillatory propulsion using ionic polymer-metal composite for aquatic propulsor applications is studied. Beam theory and the concept of hydrodynamic function are used to describe the interaction between the beam and water. Furthermore, a quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to obtain hydrodynamic performance of the ionic polymer-metal composite propulsor. Dynamic characteristics of ionic polymer-metal composite fin are analyzed using numerical simulations. It is shown that the use of optimization methods can lead to significant improvement in performance of the ionic polymer-metal composite fin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper exhibits high thermal conductivity properties and hence it is extensively used in cryogenic applications like cold fingers, heat exchangers, etc. During the realization of such components, copper undergoes various machining operations from the raw material stage to the final component. During these machining processes, stresses are induced within the metal resulting in internal stresses, strains and dislocations. These effects build up resistance paths for the heat carriers which transfer heat from one location to the other. This in turn, results in reduction of thermal conductivity of the conducting metal and as a result the developed component will not perform as per expectations. In the process of cryogenic treatment, the metal samples are exposed to cryogenic temperature for extended duration of time for 24 hours and later tempered. During this process, the internal stresses and strains are reduced with refinement of the atomic structure. These effects are expected to favourably improve thermal conductivity properties of the metal. In this experimental work, OFHC copper samples were cryotreated for 24 hours at 98 K and part of them were tempered at 423K for one hour. Significant enhancement of thermal conductivity values were observed after cryotreating and tempering the copper samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyaniline-PbO composites of various mass fractions were prepared by in situ polymerisation. The prepared samples were characterised by FTIR, and the dominant peaks confirmed the formation of polyaniline-PbO composites. The SEM study shows a granular agglomerated morphology, and increases with an increase in the lead oxide mass % in polyaniline. Direct current (DC) conductivity (sigma (DC)) was studied as a function of temperature (T). From these studies, it was found that conductivity increased at higher temperatures due to the polarons hopping from one localised state to another. DSC studies reveal, the decrease in peak temperature from 273A degrees C (pure PANI) to 169.2A degrees C, 193.5A degrees C, 218.4A degrees C, 235.2A degrees C, and 224.2A degrees C, respectively for the various mass fractions (10 %, 30 %, 20 %, 40 %, and 50 %) of polyaniline-PbO composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics-based closed-form analytical model of flexural phonon-dependent diffusive thermal conductivity (kappa) of suspended rectangular single layer graphene sheet. A quadratic dependence of the out-of-plane phonon frequency, generally called flexural phonons, on the phonon wave vector has been taken into account to analyze the behavior of kappa at lower temperatures. Such a dependence has further been used for the determination of second-order three-phonon Umklapp and isotopic scatterings. We find that these behaviors in our model are best explained through the upper limit of Debye cut-off frequency in the second-order three-phonon Umklapp scattering of the long phonon waves that actually remove the thermal conductivity singularity by contributing a constant scattering rate at low frequencies and note that the out-of-plane Gruneisen parameter for these modes need not be too high. Using this, we clearly demonstrate that. follows a T-1.5 and T-2 law at lower and higher temperatures in the absence of isotopes, respectively. However in their presence, the behavior of kappa sharply deviates from the T-2 law at higher temperatures. The present geometry-dependent model of kappa is found to possess an excellent match with various experimental data over a wide range of temperatures which can be put forward for efficient electro-thermal analyses of encased/supported graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous zirconia ceramic monoliths have been extensively used in thermo-structural applications due to their inherent low thermal conductivity in combination with their adaptability to form complicated shapes through advanced ceramic processing techniques. However, extruded cellular honeycomb structures made from these materials have been less explored for thermal management applications. There exist large potential applications due to their unique configurations, resulting in better heat-management mechanisms. Some of the studies carried out on zirconia honeycombs are safeguarded through patents due to its technical importance, or the information is not in the public domain. In the present study, for the sake of comparison, honeycomb specimens with varying wall thicknesses and unit cell lengths maintaining almost same bulk density of around 90% theoretical and relative density of 0.34-0.37 were prepared and subjected to thermal conductivity evaluation along with the solid samples with relative density of 1.0 using monotonic heating regime methodology. In addition, the effect of channel shape was also evaluated using square and triangular channeled honeycombs with the same relative densities. The results obtained from these specimens were correlated with their configurations to bring out the advantages accrued by using the honeycomb with these configurations. It was observed that a significant decrease in thermal conductivity was achieved in honeycombs, which can be attributed to the behavior of various heat transfer mechanisms that are operative at high temperatures in combination with the considerable reduction in thermal mass and the consequent conduction through the solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Thus, IPMC’s provide promising application for biomimetic fish like propulsion systems. In this paper, we design and analyze IPMC underwater propulsor inspired from swimming of Labriform fishes. Different fish species in nature are source of inspiration for different biomimetic flapping IPMC fin design. Here, three fish species with high performance flapping pectoral fin locomotion is chosen and performance analysis of each fin design is done to discover the better configurations for engineering applications. In order to describe the behavior of an active IPMC fin actuator in water, a complex hydrodynamic function is used and structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping rectangular shape fin. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are analyzed with numerical simulations. Finally, a comparative study is performed to analyze the performance of three different biomimetic IPMC flapping pectoral fins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme, D-xylose isomerase (D-xylose keto-isomerase; EC 5.3.1.5) is a soluble enzyme that catalyzes the conversion of the aldo-sugar D-xylose to the keto-sugar D-xylulose. A total of 27 subunits of D-xylose isomerase from Streptomyces rubiginosus were analyzed in order to identify the invariant water molecules and their water-mediated ionic interactions. A total of 70 water molecules were found to be invariant. The structural and/or functional roles of these water molecules have been discussed. These invariant water molecules and their ionic interactions may be involved in maintaining the structural stability of the enzyme D-xylose isomerase. Fifty-eight of the 70 invariant water molecules (83%) have at least one interaction with the main chain polar atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic Polymer Metal Composites (IPMCs) are a class of Electro-Active Polymers (EAPs) consisting of a base polymer (usually Nafion), sandwiched between thin films of electrodes and an electrolyte. Apart from fuel cell like proton exchange process in Nafion, these IPMCs can act both as an actuator and a sensor. Typically, IPMCs have been known for their applications in fuel cell technology and in artificial muscles for robots. However, more recently, sensing properties of IPMC have opened up possibilities of mechanical energy harvesting. In this paper, we consider a bi-layer stack of IPMC membranes where fluid flow induced cyclic oscillation allows collection of electronic charge across a pair of functionalized electrode on the surface of IPMC layers/stacks. IPMCs work well in hydrated environment; more specifically, in presence of an electrolyte, and therefore, have great potential in underwater applications like hydrodynamic energy harvesting. Hydrodynamic forces produce bending deformation, which can induce transport of cations via polymer chains of the base polymer of Nafion or PTFE. In our experimental set-up, the deformation is induced into the array of IPMC membranes immersed in electrolyte by water waves caused by a plunger connected to a stepper motor. The frequency and amplitude of the water waves is controlled by the stepper motor through a micro-controller. The generated electric power is measured across a resistive load. Few orders of magnitude increase in the harvested power density is observed. Analytical modeling approach used for power and efficiency calculations are discussed. The observed electro-mechanical performance promises a host of underwater energy harvesting applications.