266 resultados para Inverse Jacobian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are three ways in which an electromagnetic wave can undergo scattering in a plasma: (i) when the scattering of radiation occurs by a single electron, it is called Compton Scattering (CS); (ii) if it occurs by a longitudinal electron plasma mode, it is called Stimulated Raman Scattering (SRS), and (iii) if it occurs by a highly damped electron plasma mode, it is called Stimulated Compton Scattering (SCS). The non-thermal continuum of quasars is believed to be produced through the combined action of synchrotron and inverse Compton processes, which are essentially single-particle processes. Here, we investigate the role of SRS and SCS in the generation of continuum radiation from these compact objects. It is shown as an example that the complete spectrum of 3C 273 can be reproduced by suitably combining SCS and SRS. The differential contributions of SCS and SRS under different values of the plasma parameters are also calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geometry and energy of argon clusters confined in zeolite NaCaA are compared with those of free clusters. Results indicate the possible existence of magic numbers among the confined clusters. Spectra obtained from instantaneous normal mode analysis of free and confined clusters give a larger percentage of imaginary frequencies for the latter indicating that the confined cluster atoms populate the saddle points of the potential energy surface significantly. The variation of the percentage of imaginary frequencies with temperature during melting is akin to the variation of other properties. It is shown that confined clusters might exhibit inverse surface melting, unlike medium-to-large-sized free clusters that exhibit surface melting. Configurational-bias Monte Carte (CBMC) simulations of n-alkanes in zeolites Y and A are reported. CBMC method gives reliable estimates of the properties relating to the conformation of molecules. Changes in the conformational properties of n-butane and other longer n-alkanes such as n-hexane and n-heptane when they are confined in different zeolites are presented. The changes in the conformational properties of n-butane and n-hexane with temperature and concentration is discussed. In general, in zeolite Y as well as A, there is significant enhancement of the gauche population as compared to the pure unconfined fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structures of pyrite-type transition-metal chalcogenides MS2-xSex (M = Fe, Co, Ni) has been investigated by photoemission and inverse-photoemission spectroscopy. The valence-band spectrum of ferromagnetic CoS2 does not show exchange splitting of the Co 3d peak, in disagreement with band-structure calculations. High-resolution photoemission spectra of NiS1.55Se0.45 shows spectral weight transfer from low (similar or equal to 50 meV) to high (0.2-0.5 eV) binding energies, in going from the metallic to the insulating phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present multifrequency Very Large Array (VLA) observations of two giant quasars, 0437-244 and 1025-229, from the Molonglo Complete Sample. These sources have well-defined FR II radio structure, possible one-sided jets, no significant depolarization between 1365 and 4935 MHz and low rotation measure (\ RM \ < 20 rad m(-2)). The giant sources are defined to be those with overall projected size greater than or equal to 1 Mpc. We have compiled a sample of about 50 known giant radio sources from the literature, and have compared some of their properties with a complete sample of 3CR radio sources of smaller sizes to investigate the evolution of giant sources, and test their consistency with the unified scheme for radio galaxies and quasars. We find an inverse correlation between the degree of core prominence and total radio luminosity, and show that the giant radio sources have similar core strengths to smaller sources of similar total luminosity. Hence their large sizes are unlikely to be caused by stronger nuclear activity. The degree of collinearity of the giant sources is also similar to that of the sample of smaller sources. The luminosity-size diagram shows that the giant sources are less luminous than our sample of smaller sized 3CR sources, consistent with evolutionary scenarios in which the giants have evolved from the smaller sources, losing energy as they expand to these large dimensions. For the smaller sources, radiative losses resulting from synchrotron radiation are more significant while for the giant sources the equipartition magnetic fields are smaller and inverse Compton lass owing to microwave background radiation is the dominant process. The radio properties of the giant radio galaxies and quasars are consistent with the unified scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present investigation calculates the surface tension and adsorption functions of the Fe-S, Fe-N, and Fe-S-N melts at 1823 K using the modified form of Butler's equations and the derived values of the surface interaction parameters of the systems. The calculated values are found to be in good agreement with those of the experimental data of the systems. The present analysis indicates similar adsorption behavior of sulfur for the Fe-S and Fe-S-N systems at 1823 K. Although a linear adsorption behavior is observed in the Fe-N system, an inverse relationship in the adsorption behavior exists between sulur and nitrogen in the Fe-S-N system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timer-based mechanisms are often used in several wireless systems to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a function of its local suitability metric. In practice, the best node gets selected successfully only if no other node's timer expires within a `vulnerability' window after its timer expiry. In this paper, we provide a complete closed-form characterization of the optimal metric-to-timer mapping that maximizes the probability of success for any probability distribution function of the metric. The optimal scheme is scalable, distributed, and much better than the popular inverse metric timer mapping. We also develop an asymptotic characterization of the optimal scheme that is elegant and insightful, and accurate even for a small number of nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method has been presented to establish the theoretical dispersion curve for performing the inverse analysis for the Rayleigh wave propagation. The proposed formulation is similar to the one available in literature, and is based on the finite difference formulation of the governing partial differential equations of motion. The method is framed in such a way that it ultimately leads to an Eigen value problem for which the solution can be obtained quite easily with respect to unknown frequency. The maximum absolute value of the vertical displacement at the ground surface is formed as the basis for deciding the governing mode of propagation. With the proposed technique, the numerical solutions were generated for a variety of problems, comprising of a number of different layers, associated with both ground and pavements. The results are found to be generally satisfactory. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been extensive experimental observations of changes in the apparent rate controlling creep parameters in studies on superplastic materials. The three most common explanations associated with these changes in the stress exponent, n, the activation energy Q and the inverse grain size exponent, p involve the effect of concurrent grain growth, the operation of a threshold stress or transitions in creep mechanisms. Each of these factors may influence experimental creep data in a similar manner. Therefore, a careful analysis of the consequences of all three factors must involve the development of a consistent set of experimental observations in order to adequately distinguish the effects of each. This paper discusses the role of concurrent grain growth, a threshold stress and transitions in creep mechanisms in superplastic materials. Specific attention is given to the analysis of data on superplastic yttria-stabilized zirconia ceramics for which an increase in n has been observed at low applied stresses. It is demonstrated that neither concurrent grain growth nor a threshold stress can account for all the relevant experimental observations in this material. It is concluded that the changes in rate controlling creep parameters are associated with the operation of two distinct sequential mechanisms as part of a grain boundary sliding process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data. (C) 2011 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copolymers of o-lm-toluidine with o-lm-amino benzoic acid have been synthesized by chemical polymerization using inverse emulsion pathway and characterized by a number of techniques including UV-Vis, FT-IR, FT Raman, EPR and NMR spectroscopies, thermal analysis and conductivity. The solubility of the copolymers in organic solvents increases with increase in the amount of amino benzoic acid in the feed. The copolymers synthesized at room temperature show relatively higher conductivity and are obtained in higher yield compared to those synthesized at 0 and 60 degreesC. The spectral studies have revealed restricted conjugation along the polymer chain. The effect of -COOH substituent on the copolymer structure is discussed. (C) 2003 Elsevier Science B.V All rights reserved.