307 resultados para Inorganic and Theoretic Chemistry
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
Complexes of the formulation [(eta(6)-p-cymene)Ru(O-2-C6H4-CH=NC6H4-4-CH3)(L)](ClO4), where L is gamma-picoline, 4-vinylpyridine, 1-methylimidazole and 1-vinylimidazole have been prepared and characterised. The molecular structure of the vinylpyridine adduct has been determined by X-ray crystallography. The crystal belongs to the monoclinic space group P2(1) with the following cell dimensions for the C31H33CIN2O5Ru(M = 650.11): a = 10.890(2)Angstrom, b = 22.295(9)Angstrom, c = 12.930(2)Angstrom, beta = 109.30(2)degrees(3), V = 2964(l)Angstrom 3, Z = 4; D-c = 1.457g cm(-3), lambda(Mo-K alpha) = 0.7107 Angstrom; mu(Mo-K alpha)= 6.61 cm(-1); T = 293 K; R = 0.0359 (wR(2) = 0.0981) for 4819 reflections with I > 2 sigma(I). The structure shows the non-bonding nature of the double bond of the 4-vinylpyridine ligand in the complex in which the metal is bonded to the eta(6)-p-cymene, the N, O-bidentate chelating schiff-base and the unidentate N-donor pyridine ligands.
Resumo:
A series of aryl monosulphides and disulphides have been synthesized and characterized. Their molecular hyperpolarizability (beta) has been measured in solution with the hyper-Rayleigh Scattering technique and also calculated by semiempirical AMI method. The trend in the observed and calculated values of first hyperpolarizability of these compounds has been found to be in good agreement. These compounds show moderate P values and excellent transparency in the visible region.
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
The layered chalcogenides, having structures analogous to graphite, are known to be unstable toward bending and show high propensity to form curved structures, thus eliminating dangling bonds at the edges. Since the discovery of fullerene and nanotube structures of WS2 and MoS2 by Tenne et al. [1-3], there have been attempts to prepare and characterize nanotubes of other layered dichalcogenides with structures analogous to MoS2. Nanotubes of MoS2 and WS2 were prepared by Tenne et al. by reducing the corresponding oxides to the suboxides followed by heating in an atmosphere of forming gas (5 % H-2 + 95 % N-2) and H2S at 700-900 degreesC [1-3]. Alternative methods of synthesis of MoS2 and WS2 nanotubes have since been proposed by employing the decomposition of the ammonium thiometallates or the corresponding trisulfide precursors. This alternative procedure was based on the observation that the trisulfide seems to be formed as an intermediate in the synthesis of the MoS2 and WS2 nanotubes [4]. Accordingly, the decomposition of the trisulfides of MoS2 and W in a reducing atmosphere directly yielded nanotubes of the disulfides MoS2 and WS2 [5]. In this article, we describe the synthesis, structure, and characterization of a few novel nanotubes of the disulfides of groups 4 and 5 metals. These include nanotubes of NbS2, TaS2, ZrS2, and HfS2. The study enlarges the scope of the inorganic nanotubes significantly and promises other interesting possibilities, including the synthesis of the diselenide nanotubes of these metals.
Resumo:
The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.
Resumo:
The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.
Resumo:
The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.
Resumo:
The infrared spectra of the matrix isolated species of N-methylformamide (NMF) and N-methylacetamide (NMA) and their N-deuterated molecules have been simulated by the extended molecular mechanics method using an empirical force field which includes charges and charge fluxes as coulombic potential parameters. The structural parameters and dipole. moments of NMF and NMA have. also been computed in satisfactory agreement with the experiment. Good agreement between experimental and calculated vibrational frequencies and infrared absorption band intensities for NMF and NMA and their deuterated molecules has been obtained. The vibrational assignments of NMF and NMA are-discussed taking also into account the infrared absorption intensities.