159 resultados para Hotels presence
Resumo:
SmB6 has been predicted to be a Kondo topological insulator with topologically protected conducting surface states. We have studied quantitatively the electrical transport through surface states in high-quality single crystals of SmB6. We observe a large nonlocal surface signal at temperatures lower than the bulk Kondo gap scale. Measurements and finite-element simulations allow us to distinguish unambiguously between the contributions from different transport channels. In contrast to general expectations, the electrical transport properties of the surface channels were found to be insensitive to high magnetic fields. We propose possible scenarios that might explain this unexpected finding. Local and nonlocal magnetoresistance measurements allowed us to identify possible signatures of helical spin states and strong interband scattering at the surface.
Resumo:
In bacteria, alternate mechanisms are known to synthesize N-10-formyltetrahydrofolate (N10-formyl-THF) and formyl glycinamide ribotide (fGAR), which are important in purine biosynthesis. In one of the mechanisms, a direct transfer of one carbon unit from formate allows Fhs to convert tetrahydrofolate to N-10-formyl-THF, and PurT to convert glycinamide ribotide (GAR) to fGAR. Our bioinformatics analysis of fhs and purT genes (encoding Fhs and PurT) showed that in a majority of bacteria (similar to 94%), their presence was mutually exclusive. A large number of organisms possessing fhs lacked purT and vice versa. The phenomenon is so penetrating that even within a genus (Bacillus) if a species possessed fhs it lacked purT and vice versa. To investigate physiological importance of this phenomenon, we used Escherichia coli, which naturally lacks fhs (and possesses purT) as model. We generated strains, which possessed fhs and purT genes in singles or together. Deletion of purT from E. coli in the presence or absence of fhs did not confer a detectable growth disadvantage in pure cultures. However, growth competition assays revealed that the strains possessing either of the single genes outcompeted those possessing both the genes suggesting that mutual exclusion of purT and fhs in organisms confers fitness advantage in mixed cultures.
Resumo:
We have investigated the impact of partially wetting particles of tens of micrometers on inversion instability of agitated liquid liquid dispersions. Particles of this size can be easily separated from the exit streams to avoid downstream processing-related issues. The results show that the presence of hydrophilic particles in small quantities (volume fraction range of 2 X 10(-4) to 1.25 x 10(-2)) significantly decreases the dispersed phase fraction at which water-in-oil (w/o) dispersions invert but leaves the inversion of oil-in-water (o/w) dispersions nearly unaffected. The addition of the same particles after they are hydrophobized decreases the dispersed phase fraction at which o/w dispersions invert but leaves the inversion of w/o dispersions unaffected. These findings suggest an increased rate of coalescence of drops when particles wet drops preferentially and a marginal decrease when they wet the continuous phase preferentially. High-speed conductivity measurements on w/o dispersion show transient conduction of a few hundred milliseconds duration through voltage pulses. Close to the inversion point, voltage pulses appear at high frequency for even 7 cm separation between the electrodes. The presence of hydrophilic particles produces a nearly identical signal at a significantly lower dispersed phase fraction itself, close to the new lowered inversion point in the presence of particles. We propose formation of elongated domains of the conducting dispersed phase through a rapid coalescence-deformation-breakup process to explain the new observations. The voltage signal appears as a forerunner of inversion instability.
Resumo:
In one dimension, noninteracting particles can undergo a localization-delocalization transition in a quasiperiodic potential. Recent studies have suggested that this transition transforms into a many-body localization (MBL) transition upon the introduction of interactions. It has also been shown that mobility edges can appear in the single particle spectrum for certain types of quasiperiodic potentials. Here, we investigate the effect of interactions in two models with such mobility edges. Employing the technique of exact diagonalization for finite-sized systems, we calculate the level spacing distribution, time evolution of entanglement entropy, optical conductivity, and return probability to detect MBL. We find that MBL does indeed occur in one of the two models we study, but the entanglement appears to grow faster than logarithmically with time unlike in other MBL systems.
Resumo:
The emission intensity of fluorophore molecule may change in presence of strong plasmon field induced by nanoparticles. The enhancement intensity is optimized through selective clustering or functionalization of nanoparticles in closed vicinity of fluorophore. Our study is aimed at understanding the enhancement mechanism of fluorescence intensity in presence of gold nanoparticles to utilize it in molecular sensing and in situ imaging in the microfluidic lab-on-chip device. Related phenomena are studied in situ in a microfluidic channel via fluorescence imaging. Detailed analysis is carried out to understand the possible mechanism of enhancement of fluorescence due to nanoparticles. In the present experimental study we show that SYTO9 fluorescence intensity increased in presence of Au nanoparticles of similar to 20 nm diameter. The fluorescence intensity is 20 time more compared to that in absence of Au nanoparticles. The enhancement of fluorescence intensity is attributed to the plasmonic resonance of Au nanoparticle at around the fluorescence emission wavelength. Underlying fundamental mechanism via dipole interaction model is explored for quantitative correlation of plasmonic enhancement properties.
Resumo:
To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.
Resumo:
The derivation of a quasi-geostrophic system from the rotating shallow-water equations on a midlatitude -plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time-scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence precipitation) occur only via non-divergent mechanisms. Following observations, a saturation profile with gradients in the zonal and meridional directions is prescribed. A purely meridional gradient has the effect of slowing down the dry Rossby waves, through a reduction in the equivalent gradient' of the background potential vorticity. A large-scale unstable moist mode results on the inclusion of a zonal gradient by itself, or in conjunction with a meridional moisture gradient. For gradients that are are representative of the atmosphere, the most unstable moist mode propagates zonally in the direction of increasing moisture, matures over an intraseasonal time-scale and has small phase speed.
Resumo:
To improve the spatial distribution of nano particles in a polymeric host and to enhance the interfacial interaction with the host, the use of chain-end grafted nanoparticle has gained popularity in the field of polymeric nanocomposites. Besides changing the material properties of the host, these grafted nanoparticles strongly alter the dynamics of the polymer chain at both local and cooperative length scales (relaxations) by manipulating the enthalpic and entropic interactions. It is difficult to map the distribution of these chain-end grafted nanoparticles in the blend by conventional techniques, and herein, we attempted to characterize it by unique technique(s) like peak force quantitative nanomechanical mapping (PFQNM) through AFM (atomic force microscopy) imaging and dielectric relaxation spectroscopy (DRS). Such techniques, besides shedding light on the spatial distribution of the nanoparticles, also give critical information on the changing elasticity at smaller length scales and hierarchical polymer chain dynamics in the vicinity of the nanoparticles. The effect of one-dimensional rodlike multiwall carbon nanotubes (MWNTs), with the characteristic dimension of the order of the radius of gyration of the polymeric chain, on the phase miscibility and chain dynamics in a classical LCST mixture of polystyrene/ poly(vinyl methyl ether) (PS/PVME) was examined in detail using the above techniques. In order to tune the localization of the nanotubes, different molecular weights of PS (13, 31, and 46 kDa), synthesized using RAFT (reversible addition fragmentation chain transfer) polymerization, was grafted onto MWNTs in situ. The thermodynamic miscibility in the blends was assessed by low-amplitude isochronal temperature sweeps, the spatial distribution of MWNTs in the blends was evaluated by PFQNM, and the hierarchical polymer chain dynamics was studied by DRS. It was observed that the miscibility, concentration fluctuation, and cooperative relaxations of the PS/PVME blends are strongly governed by the spatial distribution of MWNTs in the blends. These findings should help guide theories and simulations of hierarchical chain dynamics in LCST mixtures containing rodlike nanoparticles.
Resumo:
A unique strategy was adopted to achieve an ultra-low electrical percolation threshold of multiwall carbon nanotubes (MWNTs) (0.25 wt%) in a classical partially miscible blend of poly-alpha-methylstyrene-co-acrylonitrile and poly(methyl methacrylate) (P alpha MSAN/PMMA), with a lower critical solution temperature. The polymer blend nanocomposite was prepared by standard melt-mixing followed by annealing above the phase separation temperature. In a two-step mixing protocol, MWNTs were initially melt-mixed with a random PS-r-PMMA copolymer and subsequently diluted with 85/15 P alpha MSAN/PMMA blends in the next mixing step. Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhanced electromagnetic interference (EMI) shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT-covered droplets, as compared to the blends without the copolymer, which were transparent to electromagnetic radiation.