486 resultados para GAP characterization
Resumo:
Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm(-1) at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg2+ ion determined by means of a combination of d.c. and ac. techniques is similar to 0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
The indispensability of biotin for crucial processes like lipid biosynthesis coupled to the absence of the biotin biosynthesis pathway in humans make the enzymes of this pathway, attractive targets for development of novel drugs against numerous pathogens including M. tuberculosis. We report the spectral and kinetic characterization of the Mycobacterium tuberculosis 7,8-Diamino-pelargonic acid (DAPA) synthase, the second enzyme of the biotin biosynthesis pathway. In contrast to the E. coli enzyme, no quinonoid intermediate was detected during the steady state reaction between the enzyme and S-adenosyl-L-methionine (SAM). The second order rate constant for this half of the reaction was determined to be 1.75 +/- 0.11 M-1 s(-1). The K-m values for 7-keto-8-aminopelargonic acid (KAPA) and SAM are 2.83 mu M and 308.28 mu M, respectively whereas the V-max and k(cat) values for the enzyme are 0.02074 mu moles/min/ml and 0.003 s(-1), respectively. Our initial studies pave the way for further detailed mechanistic and kinetic characterization of the enzyme.
Resumo:
The carbohydrate residues of glycosphingolipids were implicated in many biologic processes such as cell-to-cell interactions; and as receptors for some viruses, bacterial and plant toxins, hormones, and so forth, and invariably for all the lectins (1). However, their receptor functions remained poorly defined for a long time as they form micelles even at very low concentrations in aqueous medium. In micelles, the oligosaccharide chains are not expected to have a well defined orientation suitable for recognition by macromolecular ligands. This problem was overcome by incorporating them in model membranes, namely, the liposomes. The demonstration of lectin-glycolipid interaction using liposomal model membranes was a crucial development that established glycolipids as biological receptors. Moreover, glycolipid-bearing liposomes provide a convenient system for investigating the role of glycolipid density, orientation, and exposure of their oligosaccharide chains at the membrane interface relevant to their receptor function (2–4).
Resumo:
Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, H-1 and C-13 NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractograms and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DNIF, DMSO and a mixture of CHCl3 and acetone and they exhibit fairly good conductivity of similar to 3.0 x 10(-3) S cm(-1). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.
Resumo:
Nanocrystalline hydroxyapatite (HAp) exhibits better bioactivity and biocompatibility with enhanced mechanical properties compared to the microcrystalline counterpart. In the present work, nanocrystalline hydroxyapatite was synthesized by wet chemical method. Sintering was carried out with nanocrystalline alumina as additive, the content of alumina being varied from 10 to 30 wt% in the composite. For 20 and 30 wt % Al2O3, hydroxyapatite decomposed into tricalcium phosphate (TCP) above the sintering temperature of 1100 degrees C. The fracture toughness of nano HAp-nano Al2O3 composite is anisotropic in nature and reached a maximum value of 6.9 MPa m(1/2).
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An analytical treatment of performance analysis of guidance laws is possible only in simplistic scenarios. As the complexity of the guidance system increases, a search for analytical solutions becomes quite impractical. In this paper, a new performance measure, based upon the notion of a timescale gap that can be computed through numerical simulations, is developed for performance analysis of guidance laws. Finite time Lyapunov exponents are used to define the timescale gap. It is shown that the timescale gap can be used for quantification of the rate of convergence of trajectories to the collision course. Comparisonbetween several guidance laws, based on the timescale gap, is presented. Realistic simulations to study the effect of aerodynamicsand atmospheric variations on the timescale gap of these guidance laws are also presented.
Resumo:
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.
Resumo:
The preparation of three different types of carbonates of praseodymium, neodymium and terbium has been described. The carbonates have been characterized by potentiometry, chemical analysis, X-ray crystallography, infra-red spectroscopy and by their thermal behaviour. The thermal decomposition of several carbonates has been studied exhaustively under a variety of conditions and the stoicheiometry, thermodynamics and energetics of the reactions at various stages of decomposition have been examined. The stoicheiometry of the oxides obtained as final products of decomposition has been examined.
Resumo:
Abstract—β-N-Oxalyl-l-α,β-diaminopropionic acid (ODAP), the toxin isolated from the seeds of Luthyrus sativus produces head retraction, tremors and convulsions when injected into a variety of experimental animals. In 12-day-old rats, it has been found that the convulsive behaviour is accompanied by profound biochemical changes in the brain. The brain homogenates prepared from ODAP injected animals show a higher rate of respiration. There is a decrease in the brain glucose, glycogen, ATP, phosphocreatine and acetylcholine levels of the convulsing animals. The inorganic phosphate, lactic acid and acetylcholineesterase levels increase. These results establish that ODAP is a typical convulsant.
Resumo:
A neurotoxic compound has been isolated from the seeds of Lathyrus sativus in 0.5% yield and characterized as β-N-oxalyl-L-α,β-diaminopropionic acid. The compound is highly acidic in character and forms oxalic acid and diaminopropionic acid on acid hydrolysis. The compound has a specific rotation of -36.9° and has apparent pK values in the order of 1.95, 2.95, and 9.25, corresponding to the two carboxyl and one amino functions, respectively. The compound has been synthesized by reacting an aqueous methanolic solution of the copper complex of L-α,β-diaminopropionic acid prepared at pH 4.5-5.0 with dimethyl oxalate under controlled pH conditions and isolating the compound by chromatography on a Dowex 50-H+ column after precipitating the copper. The compound induced severe neurological symptoms in day-old chicks at the level of 20 mg/chick, but not in rats or mice. It also inhibited the growth of several microorganisms and of the insect larva Corcyra cephalonica Staint. L-Homoarginine had no neural action in chicks. It is suggested that the neurotoxic compound is species specific in its action and may be related to "neurolathyrism" associated with the human consumption of L. sativus seeds.
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
Escherichia coil encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and hightemperature stress. Purified PepA and PepB display broad substratespecificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms. (C) 2010 Elsevier Inc. All rights reserved.