280 resultados para GAIT CHARACTERISTICS
Resumo:
Experiments were conducted to measure the ac breakdown strength of 0.5 mm, thick epoxy alumina nanocomposites with different filler concentrations of 0.1, 1 and 5wt%. The experiments were performed as per the ASTM D 149 standard. It was observed that the ac breakdown strength was marginally lower up to 1wt% filler concentration and then increased at 5wt% filler concentration as compared to the unfilled epoxy. The Weibull shape parameter (β) increased with the addition of nanoparticles to epoxy. The dependence of thickness on the ac breakdown strength was also analyzed by conducting experiments on 1mm and 3mm thick unfilled epoxy and epoxy alumina nanocomposites of 1wt% and 5wt% filler concentrations. The DSC analysis was done to understand the material properties at the filler resin interface in order to study the effect of the filler concentration and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites.
Resumo:
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Resumo:
Studies on redox supercapacitors employing electronically conducting polymers are of great importance for hybrid power sources and pulse power applications. In the present study, polyaniline (PANI) has been potentiodynamically deposited on stainless steel substrate and characterized in a gel polymer electrolyte (GPE). Use of the GPE facilitates a voltage limit of the capacitor to 1 V, instead of 0.75 V in aqueous electrolytes. From charge-discharge studies of the solid-state PANI capacitors, a specific capacitance of 250 F g(-1) has been obtained at a specific power of 7.5 kW kg(-1) of PANI. The values of specific capacitance and specific power are considerably higher than those reported in the literature. High energy and high power characteristics of the PANI are presented. (C) 2002 The Electrochemical Society.
Resumo:
(La0.667Ca0.333Mn1-xMO3-delta)-O-x (M = Mg, Li or Re) exhibit insulating behaviour and nonlinear current-voltage (J-E) relationship with voltage-limiting characteristics at temperatures below the ferromagnetic transition (T-c). The high current region is set in at field strengths <60 V/cm. Nonlinearity exponent, alpha in the relation J = kE(alpha) increases inversely with temperature. In presence of an external magnetic field, the J-E curves show higher current density at lower field strengths. Microstructural studies indicate that there is no segregation of secondary phases in the grain boundary regions. There is remarkable changes in p(T) as well as J-E curves with the grain size. Annealing studies in lower p(O2) atmospheres indicate that there is significant out-diffusion of oxygen ions through the grain boundary layer (GBL) regions creating oxygen vacancies in the GBL regions. The concentration of Mn4+ ions is lowered at the GBL due to oxygen vacancies, reducing the probability of hopping and resulting in insulating behaviour. Therefore an insulating barrier is introduced between two conducting grains and the carrier motion between the grains is inhibited. Thus below T-c, where sufficient increase in resistivity is observed the conduction may be arising as a result of spin dependent tunneling across the barrier. External electric field lowers the barrier height and establishes carrier transport across the barrier. Above certain field strength, barrier height diminishes significantly and thereby allowing large number of carriers for conduction, giving rise to highly nonlinear conductivity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.
Resumo:
Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The method of characteristics was used to generate passive earth pressure coefficients for an inclined wall retaining cohesionless backfill material in the presence of pseudostatic horizontal earthquake body forces. The variation of the passive earth pressure coefficients K-pq and K-pgamma with changes in horizontal earthquake acceleration coefficient due to the components of soil unit weight and surcharge pressure, respectively, has been obtained; a closed-form solution for K-pq is also provided. The passive earth resistance has been found to decrease sharply with an increase in the magnitude of horizontal earthquake acceleration. The computed passive earth pressure coefficients were found to be the lowest when compared to all of the previous solutions available in the literature.
Resumo:
The results of the studies on the effect of rare earth Nd doping on the phase formation behavior and electrical properties of sol-gel derived Pb-1.05(Zr0.53Ti0.47)O-3 (PZT) thin films are presented. The perovskite phase is obtained up to 5 at. % doping and beyond that pyrochlore phase was found to coexist with the perovskite phase in all the films. The transition temperature of undoped lead zirconate titanate (PZT) film was found to be reduced with Nd doping. The Nd doped films also exhibited typical relaxor-type behavior and a diffuse phase transition, similar to that observed in relaxor materials. The introduction of Nd into the PZT lattice probably introduces disorder in the B site of ABO(3) lattice, which causes the observed dielectric relaxation. Efforts were made to isolate the irreversible component contributions in low field dielectric and high field polarization switching behavior. (C) 2001 American Institute of Physics.
Resumo:
The current�voltage characteristics of Au/n-GaAs Schottky diodes grown by metal-organic vapor-phase epitaxy on Ge substrates were determined in the temperature range 80�300 K. The zero-bias barrier height for current transport decreases and the ideality factor increases at low temperatures. The ideality factor was found to show the T0 effect and a higher characteristic energy. The excellent matching between the homogeneous barrier height and the effective barrier height was observed and infer good quality of the GaAs film. No generation�recombination current due to deep levels arising during the GaAs/Ge heteroepitaxy was observed in this study. The value of the Richardson constant was found to be 7.04 A K?2 cm?2, which is close to the value used for the determination of the zero-bias barrier height.
Effect of repeated blast loading on damage characteristics of tunnels in weak rock mass-a case study
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.