152 resultados para Frequency-dependent parameters


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reveals an early quasi-saturation (QS) effect attributed to the geometrical parameters in shallow trench isolation-type drain-extended MOS (STI-DeMOS) transistors in advanced CMOS technologies. The quasi-saturation effect leads to serious g(m) reduction in STI-DeMOS. This paper investigates the nonlinear resistive behavior of the drain-extended region and its impact on the particular behavior of the STI-DeMOS transistor. In difference to vertical DMOS or lateral DMOS structures, STI-DeMOS exhibits three distinct regions of the drain extension. A complete understanding of the physics in these regions and their impact on the QS behavior are developed in this paper. An optimization strategy is shown for an improved g(m) device in a state-of-the-art 28-nm CMOS technology node.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.