168 resultados para Equienergetic self-complementary graphs
Resumo:
We show that the substrate affects the interparticle spacing in monolayer arrays with hexagonal order formed by self-assembly of polymer grafted nanoparticles. Remarkably, arrays with square packing were formed due to convective shearing at a liquid surface induced by miscibility of colloidal solution with the substrate.
Resumo:
Nicotinate-N-oxide and isonicotinate-N-oxide have been employed to synthesize four heterometallic metallamacrocycles (dppf)(2)Pd-2(nicotinate-N-oxide)(2)](OTf)(2) (1), (dppf)(2)Pt-2(nicotinate-N-oxide)(2)](OTf)(2) (2), (dppf) 2Pd2(isonicotinate-N-oxide)(2)](OTf)(2) (3) and (dppf)(2)Pt-2(isonicotinate-N-oxide)(2)](OTf)(2) (4). The complexes represent the first examples of metallamacrocycles driven by solely Pd(II)/Pt(II)-O coordination using carboxylate-N-oxide donor. All the complexes 1-4 are characterized by IR, UV-Vis, multinuclear NMR spectroscopic and ESI-MS studies. The molecular structures of the complexes 1 and 3 are unambiguously determined by single crystal X-ray diffraction analysis. Despite the possibility of formation of several linkage isomers due to ambidentate nature of the donors, exclusive formation of 2 + 2] self-assembled single isomeric metallamacrocycle in each case is interesting observation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.
Resumo:
We establish conditions for the existence, in a chordal graph, of subgraphs homeomorphic to K-n (n greater than or equal to 3), K-m,K-n (m,n greater than or equal to 2), and wheels W-r (r greater than or equal to 3). Using these results, we develop a simple linear time algorithm for testing planarity of chordal graphs. We also show how these results lead to simple polynomial time algorithms for the Fixed Subgraph Homeomorphism problem on chordal graphs for some special classes of pattern graphs.
Resumo:
The reaction of n-BuSn(O)OH](n), and 9-hydroxy-9-fluorenecarboxylic acid in the presence of p-X-C6H4-OH (X = F, Br) afforded hydroxyl-rich hexameric organostannoxane prismanes. The crystal structures of these prismanes reveal guest-assisted supramolecular structures. Self-assembly of these compounds on a mica surface affords organooxotin nanotubules.
Resumo:
Six disaccharide amphiphiles were synthesized and their hydrogel-forming behavior was extensively studied. These amphiphiles were based on maltose and lactose. Since the gels formed from some of these systems showed the ability to "trap" water molecules upon gelation, these gels were described as "hydrogels". When these gels were heated to similar to 70 degrees C, the samples turned into clear, isotropic fluids, and upon gradual cooling, the hydrogels could be reproduced. Thus these systems were also "thermoreversible". The low molecular mass (MW 565) of the gelators compared to that of a typical polymeric gelator forming substance implies pronounced aggregation of the disaccharide amphiphiles into larger microstructures during gelation. To discern the aggregate textures and morphologies, the specimen hydrogel samples were examined by high-resolution scanning electron microscopy (SEM). A possible reason for the exceptionally high water gelating capacities (>6000 molecules of water per gelator molecule) exhibited by these N-alkyl disaccharide amphiphiles is the presence of large interlamellar spaces into which the water molecules get entrapped due to surface tension. In contrast to their single-chain counterparts, the double-chain lactosyl and maltosylamine amphiphiles upon solubilization in EtOH-H2O afforded hydrogels with reduced mechanical strengths. Interestingly, the corresponding microstructures were found to be quite different from the corresponding hydrogels of their single-chain counterparts. Rheological studies provided further insights into the behavior of these hydrogels. Varying the chain length of the alcohol cosolvent could modulate the gelation capacities, melting temperatures, and the mechanical properties of these hydrogels. To explain the possible reasons of gelation, the results of molecular modeling and energy minimization studies were also included.
Resumo:
Two new cadmium coordination polymers namely Cd(HAmTrz-COO)(4)(NH4+)(2)] 1; and Cd(HAmTrz)(2)I-2](n) 2; (HAmTrz-COOH = 3-amino-1,2,4-triazole-5-carboxylic acid), have been prepared based on HAmTrz-COOH as ligand. The crystal structures of 1 and 2 have been determined by single-crystal X-ray diffraction technique. In coordination-complex 1 four triazole ligands coordinate via N1 nitrogen leading to a tetrahedral geometry around cadmium ion, while in 2 the ligand prefers to coordinate to the metal in a bidentate bridging mode. The structures of both the coordination polymers can be envisaged as 3D hydrogen bonded networks. Thermogravimetric analysis shows that 2 is more stable than 1 owing to different coordination numbers of cadmium atoms. Photoluminescence properties of both the compounds have been investigated in the solid state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A proper edge-coloring with the property that every cycle contains edges of at least three distinct colors is called an acyclic edge-coloring. The acyclic chromatic index of a graph G, denoted. chi'(alpha)(G), is the minimum k such that G admits an acyclic edge-coloring with k colors. We conjecture that if G is planar and Delta(G) is large enough, then chi'(alpha) (G) = Delta (G). We settle this conjecture for planar graphs with girth at least 5. We also show that chi'(alpha) (G) <= Delta (G) + 12 for all planar G, which improves a previous result by Fiedorowicz, Haluszczak, and Narayan Inform. Process. Lett., 108 (2008), pp. 412-417].
Resumo:
Surface orientation of self-assembled molecular films of 2,9,6,23-tetraamino cobalt phthalocyanine on gold and silver is shown to determine the nature and the products of the electrocatalytic reduction of oxygen.
Resumo:
The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.
Crystallization of SrCO3 on a self-assembled monolayer substrate: an in-situ synchrotron X-ray study
Resumo:
Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the growth of SrCO3 (strontianite) crystals on a SAM substrate.
Resumo:
1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.
Resumo:
A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.