176 resultados para Electrical system
Resumo:
This paper presents the design and development of a novel optical vehicle classifier system, which is based on interruption of laser beams, that is suitable for use in places with poor transportation infrastructure. The system can estimate the speed, axle count, wheelbase, tire diameter, and the lane of motion of a vehicle. The design of the system eliminates the need for careful optical alignment, whereas the proposed estimation strategies render the estimates insensitive to angular mounting errors and to unevenness of the road. Strategies to estimate vehicular parameters are described along with the optimization of the geometry of the system to minimize estimation errors due to quantization. The system is subsequently fabricated, and the proposed features of the system are experimentally demonstrated. The relative errors in the estimation of velocity and tire diameter are shown to be within 0.5% and to change by less than 17% for angular mounting errors up to 30 degrees. In the field, the classifier demonstrates accuracy better than 97.5% and 94%, respectively, in the estimation of the wheelbase and lane of motion and can classify vehicles with an average accuracy of over 89.5%.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
As System-on-Chip (SoC) designs migrate to 28nm process node and beyond, the electromagnetic (EM) co-interactions of the Chip-Package-Printed Circuit Board (PCB) becomes critical and require accurate and efficient characterization and verification. In this paper a fast, scalable, and parallelized boundary element based integral EM solutions to Maxwell equations is presented. The accuracy of the full-wave formulation, for complete EM characterization, has been validated on both canonical structures and real-world 3-D system (viz. Chip + Package + PCB). Good correlation between numerical simulation and measurement has been achieved. A few examples of the applicability of the formulation to high speed digital and analog serial interfaces on a 45nm SoC are also presented.
Resumo:
A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.
Resumo:
In this paper we present an approach to build a prototype. model of a first-responder localization system intended for disaster relief operations. This system is useful to monitor and track the positions of the first-responders in an indoor environment, where GPS is not available. Each member of the first responder team is equipped with two zero-velocity-update-aided inertial navigation systems, one on each foot, a camera mounted on a helmet, and a processing platform strapped around the waist of the first responder, which fuses the data from the different sensors. The fusion algorithm runs real-time on the processing platform. The video is also processed using the DSP core of the computing machine. The processed data consisting of position, velocity, heading information along with video streams is transmitted to the command and control system via a local infrastructure WiFi network. A centralized cooperative localization algorithm, utilizing the information from Ultra Wideband based inter-agent ranging devices combined with the position estimates and uncertainties of each first responder, has also been implemented.
Resumo:
Practical phantoms are essential to assess the electrical impedance tomography (EIT) systems for their validation, calibration and comparison purposes. Metal surface electrodes are generally used in practical phantoms which reduce the SNR of the boundary data due to their design and development errors. Novel flexible and biocompatible gold electrode arrays of high geometric precision are proposed to improve the boundary data quality in EIT. The flexible gold electrode arrays are developed on flexible FR4 sheets using thin film technology and practical gold electrode phantoms are developed with different configurations. Injecting a constant current to the phantom boundary the surface potentials are measured by a LabVIEW based data acquisition system and the resistivity images are reconstructed in EIDORS. Boundary data profile and the resistivity images obtained from the gold electrode phantoms are compared with identical phantoms developed with stainless steel electrodes. Surface profilometry, microscopy and the impedance spectroscopy show that the gold electrode arrays are smooth, geometrically precised and less resistive. Results show that the boundary data accuracy and image quality are improved with gold electrode arrays. Results show that the diametric resistivity plot (DRP), contrast to noise ratio (CNR), percentage of contrast recovery (PCR) and coefficient of contrast (COC) of reconstructed images are improved in gold electrode phantoms. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In the process of service provisioning, providing required service to the user without user intervention, with reduction of the cognitive over loading is a real challenge. In this paper we propose a user centred context aware collaborative service provisioning system, which make use of context along with collaboration to provide the required service to the user dynamically. The system uses a novel approach of query expansion along with interactive and rating matrix based collaboration. Performance of the system is evaluated in Mobile-Commerce environment. The results show that the system is time efficient and perform with better precision and recall in comparison with context aware system.
Resumo:
This paper considers the problem of channel estimation at the transmitter in a spatial multiplexing-based Time Division Duplex (TDD) Multiple Input Multiple Output (MIMO) system with perfect CSIR. A novel channel-dependent Reverse Channel Training (RCT) sequence is proposed, using which the transmitter estimates the beamforming vectors for forward link data transmission. This training sequence is designed based on the following two metrics: (i) a capacity lower bound, and (ii) the mean square error in the estimate. The performance of the proposed training scheme is analyzed and is shown to significantly outperform the conventional orthogonal RCT sequence. Also, in the case where the transmitter uses water-filling power allocation for data transmission, a novel RCT sequence is proposed and optimized with respect to the MSE in estimating the transmit covariance matrix.
Resumo:
Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Electrical Impedance Tomography (EIT) is a computerized medical imaging technique which reconstructs the electrical impedance images of a domain under test from the boundary voltage-current data measured by an EIT electronic instrumentation using an image reconstruction algorithm. Being a computed tomography technique, EIT injects a constant current to the patient's body through the surface electrodes surrounding the domain to be imaged (Omega) and tries to calculate the spatial distribution of electrical conductivity or resistivity of the closed conducting domain using the potentials developed at the domain boundary (partial derivative Omega). Practical phantoms are essentially required to study, test and calibrate a medical EIT system for certifying the system before applying it on patients for diagnostic imaging. Therefore, the EIT phantoms are essentially required to generate boundary data for studying and assessing the instrumentation and inverse solvers a in EIT. For proper assessment of an inverse solver of a 2D EIT system, a perfect 2D practical phantom is required. As the practical phantoms are the assemblies of the objects with 3D geometries, the developing of a practical 2D-phantom is a great challenge and therefore, the boundary data generated from the practical phantoms with 3D geometry are found inappropriate for assessing a 2D inverse solver. Furthermore, the boundary data errors contributed by the instrumentation are also difficult to separate from the errors developed by the 3D phantoms. Hence, the errorless boundary data are found essential to assess the inverse solver in 2D EIT. In this direction, a MatLAB-based Virtual Phantom for 2D EIT (MatVP2DEIT) is developed to generate accurate boundary data for assessing the 2D-EIT inverse solvers and the image reconstruction accuracy. MatVP2DEIT is a MatLAB-based computer program which simulates a phantom in computer and generates the boundary potential data as the outputs by using the combinations of different phantom parameters as the inputs to the program. Phantom diameter, inhomogeneity geometry (shape, size and position), number of inhomogeneities, applied current magnitude, background resistivity, inhomogeneity resistivity all are set as the phantom variables which are provided as the input parameters to the MatVP2DEIT for simulating different phantom configurations. A constant current injection is simulated at the phantom boundary with different current injection protocols and boundary potential data are calculated. Boundary data sets are generated with different phantom configurations obtained with the different combinations of the phantom variables and the resistivity images are reconstructed using EIDORS. Boundary data of the virtual phantoms, containing inhomogeneities with complex geometries, are also generated for different current injection patterns using MatVP2DEIT and the resistivity imaging is studied. The effect of regularization method on the image reconstruction is also studied with the data generated by MatVP2DEIT. Resistivity images are evaluated by studying the resistivity parameters and contrast parameters estimated from the elemental resistivity profiles of the reconstructed phantom domain. Results show that the MatVP2DEIT generates accurate boundary data for different types of single or multiple objects which are efficient and accurate enough to reconstruct the resistivity images in EIDORS. The spatial resolution studies show that, the resistivity imaging conducted with the boundary data generated by MatVP2DEIT with 2048 elements, can reconstruct two circular inhomogeneities placed with a minimum distance (boundary to boundary) of 2 mm. It is also observed that, in MatVP2DEIT with 2048 elements, the boundary data generated for a phantom with a circular inhomogeneity of a diameter less than 7% of that of the phantom domain can produce resistivity images in EIDORS with a 1968 element mesh. Results also show that the MatVP2DEIT accurately generates the boundary data for neighbouring, opposite reference and trigonometric current patterns which are very suitable for resistivity reconstruction studies. MatVP2DEIT generated data are also found suitable for studying the effect of the different regularization methods on reconstruction process. Comparing the reconstructed image with an original geometry made in MatVP2DEIT, it would be easier to study the resistivity imaging procedures as well as the inverse solver performance. Using the proposed MatVP2DEIT software with modified domains, the cross sectional anatomy of a number of body parts can be simulated in PC and the impedance image reconstruction of human anatomy can be studied.
Resumo:
Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electret microphone, amplifier and filter. It makes use of the windows sound card and associated software for data acquisition and analysis. The measurement system is calibrated using a professional sound level meter. Acoustic noise measurements are made on an induction motor drive using the proposed system as per relevant international standards. These measurements are seen to match closely with those of a professional meter.
Resumo:
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.