261 resultados para Electrical power
Resumo:
This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.
Resumo:
A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.
Resumo:
We report electrical property of a polycrystalline NdLiMo2O8 ceramics using complex impedance analysis. The material shows temperature dependent electrical relaxation phenomena. The d.c. conductivity shows typical Arrhenius behavior, when observed as a function of temperature. The a.c. conductivity is found to obey Jonscher's universal power law. The material was prepared in powder form by a standard solid-state reaction technique. Material formation and crystallinity have been confirmed by X-ray diffraction studies. Impedance measurements have been performed over a range of temperatures and frequencies. The results have been analyzed in the complex plane formalism and suitable equivalent circuits have been proposed in different regions. The role of bulk and grain boundary effect in the overall electrical conduction process is discussed with proper justification. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The throughput-optimal discrete-rate adaptation policy, when nodes are subject to constraints on the average power and bit error rate, is governed by a power control parameter, for which a closed-form characterization has remained an open problem. The parameter is essential in determining the rate adaptation thresholds and the transmit rate and power at any time, and ensuring adherence to the power constraint. We derive novel insightful bounds and approximations that characterize the power control parameter and the throughput in closed-form. The results are comprehensive as they apply to the general class of Nakagami-m (m >= 1) fading channels, which includes Rayleigh fading, uncoded and coded modulation, and single and multi-node systems with selection. The results are appealing as they are provably tight in the asymptotic large average power regime, and are designed and verified to be accurate even for smaller average powers.
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static VAr compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system
Resumo:
An efficient load flow solution technique is required as a part of the distribution automation (DA) system for taking various control and operations decisions. This paper presents an efficient and robust three phase power flow algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation to calculate branch currents and node voltages. The proposed method has been tested to analyse several practical distribution networks of various voltage levels and also having high R/X ratio. The results for a practical distribution feeder are presented for illustration purposes. The application of the proposed method is also extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
Three algorithms for reactive power optimization are proposed in this paper with three different objective functions. The objectives in the proposed algorithm are to minimize the sum of the squares of the voltage deviations of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (:3L2) algorithm, and also the objective of system real power loss (Ploss) minimization. The approach adopted is an iterative scheme with successive power flow analysis using decoupled technique and solution of the linear programming problem using upper bound optimization technique. Results obtained with all these objectives are compared. The analysis of these objective functions are presented to illustrate their advantages. It is observed comparing different objective functions it is possible to identify critical On Load Tap Changers (OLTCs) that should be made manual to avoid possible voltage instability due to their operation based on voltage improvement criteria under heavy load conditions. These algorithms have been tested under simulated conditions on few test systems. The results obtained on practical systems of 24-node equivalent EHV Indian power network, and for a 205 bus EHV system are presented for illustration purposes.
Resumo:
This paper addresses the problem of curtailing the number of control actions using fuzzy expert approach for voltage/reactive power dispatch. It presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage profile of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed Fuzzy Logic Control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and modified IEEE-30 bus system. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a modified IEEE-30 bus test system and a 205-node equivalent EHV system a part of Indian southern grid are presented for illustration purposes. The proposed fuzzy-expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups with few number of controllers.
Intelligent Approach for Fault Diagnosis in Power Transmission Systems Using Support Vector Machines
Resumo:
This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.