210 resultados para ENTROPY GENERATION
Resumo:
Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.
Resumo:
Rutile phase TiO2 nanoparticles have been successfully prepared at 120 degrees C for one day via the ionothermal method using imidazolium based functionalized ionic liquid. The obtained products have been characterized by various techniques. XRD pattern shows rutile phase with crystallite size similar to 15 nm. FTIR shows a band at similar to 410 cm(-1) assigned to Ti-O-Ti stretching vibrations and few other bands due to the presence of ionic liquid. UV-vis studies show maximum absorbance at similar to 215 nm due to the imidazolium moiety and a band at 316 nm due to TiO2 nanoparticles. TEM images show that the size of particle is similar to 30 nm. TG-DTA shows weight loss corresponding to the formation of stable TiO2 nanoparticles. The rutile TiO2 nanoparticle is a promising material for hydrogen generation through photocatalysis. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.
Resumo:
This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Variable speed operation of microhydro power plants is gaining popularity due to the benefits that accrue from their use and the development of suitable generator control systems. This paper highlights the benefits of variable speed systems over conventional systems and also proposes a simple emulator for hydraulic turbines that operate in variable speed fixed flow rate mode. The emulator consists of an uncontrolled separately excited DC motor with additional resistors and has performance characteristics similar to that of the hydraulic turbine.
Resumo:
We show how Majorana end modes can be generated in a one-dimensional system by varying some of the parameters in the Hamiltonian periodically in time. The specific model we consider is a chain containing spinless electrons with a nearest-neighbor hopping amplitude, a p-wave superconducting term, and a chemical potential; this is equivalent to a spin-1/2 chain with anisotropic XY couplings between nearest neighbors and a magnetic field applied in the (z) over cap direction. We show that varying the chemical potential (or magnetic field) periodically in time can produce Majorana modes at the ends of a long chain. We discuss two kinds of periodic driving, periodic delta-function kicks, and a simple harmonic variation with time. We discuss some distinctive features of the end modes such as the inverse participation ratio of their wave functions and their Floquet eigenvalues which are always equal to +/- 1 for time-reversal-symmetric systems. For the case of periodic delta-function kicks, we use the effective Hamiltonian of a system with periodic boundary conditions to define two topological invariants. The first invariant is a well-known winding number, while the second invariant has not appeared in the literature before. The second invariant is more powerful in that it always correctly predicts the numbers of end modes with Floquet eigenvalues equal to + 1 and -1, while the first invariant does not. We find that the number of end modes can become very large as the driving frequency decreases. We show that periodic delta-function kicks in the hopping and superconducting terms can also produce end modes. Finally, we study the effect of electron-phonon interactions (which are relevant at finite temperatures) and a random noise in the chemical potential on the Majorana modes.
Resumo:
We consider entanglement entropy in the context of gauge/gravity duality for conformal field theories in even dimensions. The holographic prescription due to Ryu and Takayanagi (RT) leads to an equation describing how the entangling surface extends into the bulk geometry. We show that setting to zero, the timetime component of the Brown-York stress tensor evaluated on the co-dimension 1 entangling surface, leads to the same equation. By considering a spherical entangling surface as an example, we observe that the Euclidean actionmethods in AdS/CFT will lead to the RT area functional arising as a counterterm needed to regularize the stress tensor. We present arguments leading to a justification for the minimal area prescription.
Resumo:
Mobile nodes observing correlated data communicate using an insecure bidirectional switch to generate a secret key, which must remain concealed from the switch. We are interested in fault-tolerant secret key rates, i.e., the rates of secret key generated even if a subset of nodes drop out before the completion of the communication protocol. We formulate a new notion of fault-tolerant secret key capacity, and present an upper bound on it. This upper bound is shown to be tight when the random variables corresponding to the observations of nodes are exchangeable. Further, it is shown that one round of interaction achieves the fault-tolerant secret key capacity in this case. The upper bound is also tight for the case of a pairwise independent network model consisting of a complete graph, and can be attained by a noninteractive protocol.
Resumo:
ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were synthesized by a simple, cost effective and environmental friendly route using Euphorbia tirucalli plant latex. The structural properties and morphological features of the phosphors were well studied by PXRD, FTIR, SEM and TEM measurements. The luminescent properties of ZnAl2O4:Dy3+ (1-9 mol%) nanophosphors were investigated from the excitation and emission spectra. The phosphor performance was evaluated by color co-ordinates. The values were well located in the near white region as a result it was highly useful for the fabrication of green component in WLEDs. The average particle size was found to be similar to 9-18 nm and same was confirmed by TEM and Scherrer's method. The highest photoluminescence (PL) and thermoluminescence (TL) intensity was obtained to be similar to 7 mol% Dy3+ concentration. A single TL glow peak was recorded at 172 degrees C at a warming rate of 2.5 degrees Cs (1). The intensity at 172 degrees C peak increases linearly up to 1 kGy and after that it diminishes. PL intensity was studied with different plant latex concentration (2-8 ml) and highest PL intensity was recorded for similar to 8 ml. The optimized phosphor showed good reusability, low fading and wide range of linearity with gamma-dose hence the phosphor was quite useful in radiation dosimetry. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider the problem of generating a realistic coherent phantom track by a group of ECAVs (Electronic Combat Aerial Vehicles) to deceive a radar network. The phantom track considered is the trajectory of a missile guided by proportional navigation. Sufficient conditions for the existence of feasible ECAV trajectories to generate the phantom track is presented. The line-of-sight guidance law is used to control the ECAVs for practical implementation. A performance index is developed to assess the performance of the ECAVS. Simulation results for single and multiple ECAVs generating the coherent phantom track are presented.
Resumo:
Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighborhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1-dimensional (1 + 1d) conformal field theories (CFTs) at finite temperature whose gravity dual is Banados-Teitelboim-Zanelli (BTZ) black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement entropy which can be computed independently in the field theory.
Resumo:
Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider generalized gravitational entropy in various higher derivative theories of gravity dual to four dimensional CFTs using the recently proposed regularization of squashed cones. We derive the universal terms in the entanglement entropy for spherical and cylindrical surfaces. This is achieved by constructing the Fefferman-Graham expansion for the leading order metrics for the bulk geometry and evaluating the generalized gravitational entropy. We further show that the Wald entropy evaluated in the bulk geometry constructed for the regularized squashed cones leads to the correct universal parts of the entanglement entropy for both spherical and cylindrical entangling surfaces. We comment on the relation with the Iyer-Wald formula for dynamical horizons relating entropy to a Noether charge. Finally we show how to derive the entangling surface equation in Gauss-Bonnet holography.
Resumo:
A new breed of microscopy techniques is coming to the forefront of optical imaging. They enhance the attainable 3D resolution of imaging in live and ``fixed'' cells' (with minimal structural perturbation) by greater than tenfold, bringing subcellular structures in sharp focus Along with long-term imaging, deep tissue and high throughput capablities, new insights in various fields of biology are being generated. The main set of these next-generation optical microscopy techniques along with select applications is described in this article.
Resumo:
In this paper, we propose a quantum method for generation of random numbers based on bosonic stimulation. Randomness arises through the path-dependent indeterministic amplification of two competing bosonic modes. We show that the process provides an efficient method for macroscopic extraction of microscopic randomness.