258 resultados para Distribution channels
Resumo:
In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.
Resumo:
In this paper, we consider the problem of designing minimum mean squared error (MMSE) filterbank precoder and equalizer for multiple input multiple output (MIMO) frequency selective channels. We derive the conditions to be satisfied by the optimal precoder-equalizer pair, and provide an iterative algorithm for solving them. The optimal design is very general, in that it is not constrained by channel dimensions, channel order, channel rank, or the input constellation. We also discuss some pertinent difierences between the filterbank approach and the space-time approach to the design of optimal precoder and equalizer. Simulation results demonstrate that the proposed design performs better than the space-time systems while supporting a higher data rate.
Resumo:
An overview of our recent results relating to the explicit construction of space-time block codes achieving the DMG tradeoff of the quasi-static fading channel is presented. The results include the explicit construction of D-MG optimal codes,generalization of perfect codes to any number of transmit antennas as well as optimal diversity-multiplexing-delay constructions for the MIMO ARQ Channel.
Resumo:
In a typical sensor network scenario a goal is to monitor a spatio-temporal process through a number of inexpensive sensing nodes, the key parameter being the fidelity at which the process has to be estimated at distant locations. We study such a scenario in which multiple encoders transmit their correlated data at finite rates to a distant and common decoder. In particular, we derive inner and outer bounds on the rate region for the random field to be estimated with a given mean distortion.
Resumo:
Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.
Resumo:
Predictive distribution modelling of Berberis aristata DC, a rare threatened plant with high medicinal values has been done with an aim to understand its potential distribution zones in Indian Himalayan region. Bioclimatic and topographic variables were used to develop the distribution model with the help of three different algorithms viz. GeneticAlgorithm for Rule-set Production (GARP), Bioclim and Maximum entroys(MaxEnt). Maximum entropy has predicted wider potential distribution (10.36%) compared to GARP (4.63%) and Bioclim (2.44%). Validation confirms that these outputs are comparable to the present distribution pattern of the B. atistata. This exercise highlights that this species favours Western Himalaya. However, GARP and MaxEnt's prediction of Eastern Himalayan states (i.e. Arunachal Pradesh, Nagaland and Manipur) are also identified as potential occurrence places require further exploration.
Resumo:
Noting that practical impinging injectors are likely to have skewness, an experimental study has been made to understand the behavior of such jets using water as the simulant. In perfectly impinging jets, a high aspect ratio ellipse-like mass distribution pattern is obtained with major axis normal to the plane of two jets whereas in skewed jets the major axis turns from its normal position. A simple analysis shows that this angle of turn is a function of skewness fraction and impingement angle only and is independent of injection velocity. Experimental data from both mass distribution and photographic technique validate this prediction.
Resumo:
Ad hoc networks are being used in applications ranging from disaster recovery to distributed collaborative entertainment applications. Ad hoc networks have become one of the most attractive solution for rapid deployment of interconnecting large number of mobile personal devices. The user community of mobile personal devices are demanding a variety of value added multimedia entertainment services. The popularity of peer group is increasing and one or some members of the peer group need to send data to some or all members of the peer group. The increasing demand for group oriented value added services is driving for efficient multicast service over ad hoc networks. Access control mechanisms need to be deployed to provide guarantee that the unauthorized users cannot access the multicast content. In this paper, we present a topology aware key management and distribution scheme for secure overlay multicast over MANET to address node mobility related issues for multicast key management. We use overlay approach for key distribution and our objective is to keep communication overhead low for key management and distribution. We also incorporate reliability using explicit acknowledgments with the key distribution scheme. Through simulations we show that the proposed key management scheme has low communication overhead for rekeying and improves the reliability of key distribution.
Resumo:
The method of Gibbs-Duhem integration suggested by Speiser et al. has been modified to derive activities from distribution equilibria. It is shown that, in general, the activities of components in melts with a common anion can be calculated, without using their standard Gibbs energies of formation, from eqUilibrium ratios and the knowledge of activities in the metal phase. Moreover, if systems are so chosen that the concentration of one element in the metal phase lies in the Henry's law region (less than 1 %), information on activities in the metal phase is not required. Conversely, activities of elements in an alloy can be readily calculated from equilibrium distribution ratios alone, if the salt phase in equilibrium contains very small amounts of one element. Application of the method is illustrated using distribution ratios from the literature on AgCI-CuCI, AgBr-CuBr, and CuDo.5 -PbD systems. The results indicate that covalent bonding and van der Waals repulsive interactions in certain types of fused salt melts can significantly affect the thermodynamic properties of mixing.