329 resultados para Diffusion measurements
Resumo:
The reaction between Fe foil and a disc of ilmenite solid solution (Co-0.48 Ni-0.52) TiO3 was studied at 1273 K. At the metal/oxide interface, the displacement reaction, Fe + (Co,Mg)TiO3 = Co + (Fe,Mg)TiO3 occurs, resulting in an ilmenite solid solution containing three divalent cations. Ferrous ions diffuse into the oxide solid solution and cause the precipitation of Co-Fe alloy as discrete particles inside the oxide matrix. The morphology of the product layer was characterized by SEM. Only two phases, alloy and ilmenite, were detected in the reaction zone. This suggests that the local flux condition imposed by ilmenite stoichiometry (Co + Fe + Mg):Ti = 1:1] was satisfied during the reactive diffusion: (J(Co) + J(Fe) + J(Mg)) = J(Ti). The composition of the alloy and the oxide was determined using EPMA as a function of distance in the direction of diffusion. Although Mg does not participate in the displacement reaction, its composition in the ilmenite phase was found to be position dependent inside the reaction zone. The up-hill diffusion of inert Mg is caused by the development of chemical potential gradients as a result of displacement reaction. The evolution of composition gradients inside the reaction zone and the diffusion path in a ternary composition diagram of the system CoTiO3-FeTiO3-MgTiO3 are discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Grain boundary sliding during high temperature deformation can lead to stress concentrations and an enhancement of diffusion in mobile boundaries. Experiments were conducted on a fine grained 3 mol% yttria stabilized tetragonal zirconia, under conditions associated with superplastic flow involving grain boundary sliding. Tracer diffusion studies under creep conditions and without load indicate that there is no enhancement in either the lattice or grain boundary diffusivities. The experimental creep data are consistent with an interface controlled diffusion creep mechanism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The dynamics of poly(isobutyl methacrylate) in toluene solution has been examined by C-13 spin-lattice relaxation time and NOE measurements as a function of temperature. The experiments were performed at 50.3 and 100.6 MHz. The backbone carbon relaxation data have been analyzed using the Dejean-Laupretre-Monnerie (DLM) model, which describes the dynamical processes in the backbone in terms of conformational transitions and bond librations. The relaxation data of the side chain nuclei have been analyzed by assuming different motional models, namely, unrestricted rotational diffusion, three site jumps, and restricted rotational diffusion. The different models have been compared for their ability to reproduce the experimental spin-lattice relaxation times and also to predict the behavior of NOE as a function of temperature. Conformational energy calculations have been carried out on a model compound by using the semiempirical quantum chemical method, AM1, and the results confirm the validity of the motional models used to describe the side-chain motion.
Resumo:
Electrical resistivity measurements have been carried out on bulk Ge-Te-Se glasses in a Bridgman anvil System. The resistivity of the Ge-Te-Se samples is found to decrease continuously with increasing pressure, with the metallization occurring around 8 GPa. Ge20TexSe80-x glasses (10 less than or equal to x less than or equal to 50) with the mean co-ordination number Z(av) = 2.4 exhibit a plateau in resistivity up to about 4 GPa pressure, followed by a continuous decrease to metallic values. On the other hand, Ge10TexSe90-x glasses (10 less than or equal to x less than or equal to 40) having Z(av) = 2.2, exhibit a smaller plateau (only up to 1 GPa), followed by a decrease in resistivity with pressure. This subtle difference in the high pressure resistivity of Ge-Te-Se glasses with Z(av) < 2.4 and Z(av) greater than or equal to 2.4 can be associated with the changes in the local structure of the chalcogenide glasses with composition.
Resumo:
Photoluminescence (PL) of high quality GaN epitaxial layer grown on beta-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an `S-like' shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be similar to 27.8 +/- 0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed similar to 4.5 +/- 2 x 10(17) Cm-3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present noise measurements of a phase fluorometric oxygen sensor that sets the limits of accuracy for this instrument. We analyze the phase sensitive detection measurement system with the signal ''shot'' noise being the only significant contribution to the system noise. Based on the modulated optical power received by the photomultiplier, the analysis predicts a noise spectral power density that was within 3 dB of the measured power spectral noise density. Our results demonstrate that at a received optical power of 20 fW the noise level was low enough to permit the detection of a change oxygen concentration of 1% at the sensor. We also present noise measurements of a new low-cost version of this instrument that uses a photodiode instead of a photomultiplier. These measurements show that the noise for this instrument was limited by noise generated in the preamplifier following the photodiode. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Sintering of titanium in its high temperature beta phase was studied by isothermal dilatometry. The sintering shrinkage y did not follow the normal time exponent type of behaviour, instead being described by the equation y = Kt(m)/[1-(A+Bt)(2)], where m = 1.93 +/- 0.07, with an activation energy of 62-90 kJ mol(-1). A detailed analysis of these results, based on the 'anomalous' diffusion behaviour reported for beta titanium, is carried out. It is shown that the generation of a high density of dislocations during the alpha --> beta phase transformation, coupled with sluggish recovery at the sintering necks, enables sintering mass transport by pipe diffusion through dislocation cores from sources of matter within the particles to become dominant.
Resumo:
Molecular dynamics (MD) simulations on rigid and flexible framework models of silicalite and a rigid framework model of the aluminophosphate VPI-5 for different sorbate diameters are reported. The sorbate-host interactions are modeled in terms of simple atom-atom Lennard-Jones interactions. The results suggest that the diffusion coefficient exhibits an anomaly as gamma approaches unity. The MD results confirm the existence of a linear regime for sorbate diameters significantly smaller than the channel diameter and an anomalous regime observed for sorbate diameters comparable to the channel diameter. The power spectra obtained by Fourier transformation of the velocity autocorrelation function indicate that there is an increase in the intensity of the low-frequency component for the velocity component parallel to the direction of motion for the sorbate diameter in the anomalous regime. The present results suggest that the diffusion anomaly is observed irrespective of (1) the geometry and topology of the pore structure and (2) the nature of the host material. The results are compared with the work of Derouane and co-workers, who have suggested the existence of ''floating molecules'' on the basis of earlier theoretical and computational approaches.
Resumo:
The anionic surfactant dodecyl sulfate (DDS) has been intercalated in an Mg-Al layered double hydroxide (LDH). Monolayer and bilayer arrangements of the alkyl chains of the intercalated surfactant can be engineered by tuning the Al/Mg ratio of the LDH. In both arrangements the anionic headgroup of the surfactant is tethered to the LDH sheets, and consequently translational mobility of the chains is absent. The degrees of freedom of the confined alkyl chains are restricted to changes in conformation. The effects of the arrangement of the intercalated surfactant chains on conformational order and dynamics have been,investigated by spectroscopic measurements and molecular dynamics simulations. Infrared, Raman, and C-13 NMR spectroscopies were used to investigate conformation of the alkyl chains in the monolayer and bilayer arrangements and variable contact time cross-polarization magic angle spinning (VCT CPMAS) NMR measurements to probe molecular motion. The alkyl chains in the monolayer arrangement of the intercalated DDS chains showed considerably greater conformational disorder and faster dynamics as compared to chains in the bilayer arrangement, in spite of the fact that the volume available per chain in the monolayer is smaller than that in the bilayer. Atomistic MD simulations of the two arrangements of the intercalated surfactant were carried out using an isothermal-isobaric ensemble. The simulations are able to reproduce the essential results of the experiment-greater conformational disorder and faster dynamics for the alkyl chains in the monolayer arrangement of the intercalated surfactant. The MD simulations show that these results are a consequence of the fact that the nature of conformational disorder in the two arrangements is different. In the monolayer arrangement the alkyl chains can sustain isolated gauche defects, whereas in the bilayer arrangement gauche conformers occur only as part of a kink a gauche(+) trans gauche(-) sequence.
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
Bulk glasses of Ge(20)Se(80-x)ln(x) (O less than or equal to x less than or equal to 18) have been used for measurements of heat capacity at constant pressure (C-p) using a differential scanning calorimeter. These measurements reveal the chemical threshold in these glasses as a function of composition. The results are discussed in the light of microscopic phase separation in these glasses.
Resumo:
New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.
Resumo:
We have developed a technique for precise measurement of small magnetic fields using nonlinear magneto-optic rotation (NMOR). The technique relies on the resonant laser beam being chopped. During the on time, the atoms are optically pumped into an aligned ground state (Delta m=2 coherence). During the off time, they freely precess around the magnetic field at the Larmor frequency. If the on-off modulation frequency matches (twice) the Larmor precession frequency, the rotation is resonantly enhanced in every cycle, thereby making the process like a repeated Ramsey measurement of the Larmor frequency. We study chopped-NMOR in a paraffin-coated Cs vapor cell. The out-of-phase demodulated rotation shows a Lorentzian peak of linewidth 85 mu G, corresponding to a sensitivity of 0.15nG/root Hz. We discuss the potential of this technique for the measurement of an atomic electric-dipole moment. Copyright (C) EPLA, 2011