253 resultados para Current intensity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A current injection pattern in Electrical Impedance Tomography (EIT) has its own current distribution profile within the domain under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability. Image reconstruction studies with practical phantoms are essential to assess the performance of EIT systems for their validation, calibration and comparison purposes. Impedance imaging of real tissue phantoms with different current injection methods is also essential for better assessment of the biomedical EIT systems. Chicken tissue paste phantoms and chicken tissue block phantoms are developed and the resistivity image reconstruction is studied with different current injection methods. A 16-electrode array is placed inside the phantom tank and the tank is filled with chicken muscle tissue paste or chicken tissue blocks as the background mediums. Chicken fat tissue, chicken bone, air hole and nylon cylinders are used as the inhomogeneity to obtained different phantom configurations. A low magnitude low frequency constant sinusoidal current is injected at the phantom boundary with opposite and neighboring current patterns and the boundary potentials are measured. Resistivity images are reconstructed from the boundary data using EIDORS and the reconstructed images are analyzed with the contrast parameters calculated from their elemental resistivity profiles. Results show that the resistivity profiles of all the phantom domains are successfully reconstructed with a proper background resistivity and high inhomogeneity resistivity for both the current injection methods. Reconstructed images show that, for all the chicken tissue phantoms, the inhomogeneities are suitably reconstructed with both the current injection protocols though the chicken tissue block phantom and opposite method are found more suitable. It is observed that the boundary potentials of the chicken tissue block phantoms are higher than the chicken tissue paste phantom. SNR of the chicken tissue block phantoms are found comparatively more and hence the chicken tissue block phantom is found more suitable for its lower noise performance. The background noise is found less in opposite method for all the phantom configurations which yields the better resistivity images with high PCR and COC and proper IRMean and IRMax neighboring method showed higher noise level for both the chicken tissue paste phantoms and chicken tissue block phantoms with all the inhomogeneities. Opposite method is found more suitable for both the chicken tissue phantoms, and also, chicken tissue block phantoms are found more suitable compared to the chicken tissue paste phantom. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The channel dynamics at the wavefront is quite complex and is basically responsible for the evolution of return stroke current. The physical processes that actually contribute to the current evolution are not very clearly known. The enhancement of channel conductance at the wavefront is necessary for the current evolution and hence, return stroke. With regard to this, several questions arise like: (i) what causes the enhancement of this conductance, (ii) as the channel core temperature and electrical conductance are closely related, does one support the other and (iii) is the increase in core temperature on the nascent section of the channel is the result of free burning arc of the wavefront just below. These questions are investigated in detail in this work with appropriate transient thermal analysis and a macroscopic physical model for the lightning return stroke. Results clearly indicate that the contribution from the thermal field of the wavefront region to the adjacent nascent channel section is negligible as compared to the field enhancement brought in by the same. In other words, the whole process of return stroke evolution is dependent on the local heat generation at the nascent section caused by the enhancement of the electric field due to the arrival of the wavefront.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a current-error space-vector-based hysteresis controller with online computation of boundary for two-level inverter-fed induction motor (IM) drives. The proposed hysteresis controller has got all advantages of conventional current-error space-vector-based hysteresis controllers like quick transient response, simplicity, adjacent voltage vector switching, etc. Major advantage of the proposed controller-based voltage-source-inverters-fed drive is that phase voltage frequency spectrum produced is exactly similar to that of a constant switching frequency space-vector pulsewidth modulated (SVPWM) inverter. In this proposed hysteresis controller, stator voltages along alpha- and beta-axes are estimated during zero and active voltage vector periods using current errors along alpha- and beta-axes and steady-state model of IM. Online computation of hysteresis boundary is carried out using estimated stator voltages in the proposed hysteresis controller. The proposed scheme is simple and capable of taking inverter upto six-step-mode operation, if demanded by drive system. The proposed hysteresis-controller-based inverter-fed drive scheme is experimentally verified. The steady state and transient performance of the proposed scheme is extensively tested. The experimental results are giving constant frequency spectrum for phase voltage similar to that of constant frequency SVPWM inverter-fed drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene's nano-dimensional nature and excellent electron transfer properties underlie its electrocatalytic behavior towards certain substances. In this light, we have used graphene in the electrochemical detection of bisphenol A. Graphene sheets were produced via soft chemistry route involving graphite oxidation and chemical reduction. X-ray diffraction, Fourier transform infra-red (FT-IR) and Raman spectroscopy were used for the characterization of the as-synthesized graphene. Graphene exhibited amorphous structure in comparison with pristine graphite from XRD spectra. FTIR showed that graphene exhibits OH and COOH groups due to incomplete reduction. Raman spectroscopy revealed that multi-layered graphene was produced due to low intensity of the 2D-peak. Glassy carbon electrode was modified with graphene by a simple drop and dry method. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. The prepared graphene- modified glassy carbon electrode exhibited more facile electron kinetics and enhanced current of about 75% when compared to the unmodified glassy carbon electrode. The modified electrode was used for the detection of bisphenol A. Under the optimum conditions, the oxidation peak current of bisphenol A varied linearly with concentration over a wide range of 5 x 10(-8) mol L-1 to 1 x 10(-6) mol L-1 and the detection limit of this method was as low as 4.689 x 10(-8) M. This method was also employed to determine bisphenol A in a real sample

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of electromagnetic field in the context of bacteria associated infections on biomaterial surfaces has not been extensively explored. In this work, we applied a moderate intensity static magnetic field (100 mT) to understand the adhesion and growth behavior of both gram positive (S. epidermidis) and gram negative bacteria (E. coli) and also to investigate bactericidal/bacteriostatic property of the applied electromagnetic field. An in-house built magnetometer was used to apply static homogeneous magnetic field during a planned set of in vitro experiments. Both the sintered hydroxyapatite (HA) and the control samples seeded with bacteria were exposed to the magnetic field (100 mT) for different timescale during their log phase growth. Quantitative analysis of the SEM images confirms the effect of electromagnetic field on suppressing bacterial growth. Furthermore, cell integrity and inner membrane permeabilization assays were performed to understand the origin of such effect. The results of these assays were statistically analyzed to reveal the bactericidal effect of magnetic field, indicating cell membrane damage. Under the investigated culture conditions, the bactericidal effect was found to be less effective for S. Epidermidis than E. coli. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2012:100B:12061217, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dark currents n(+)/v/p(+) Hg0.69Cd0.Te-31 mid wave infrared photodiodes were measured at room temperature. The diodes exhibited negative differential resistance at room-temperature, but with increasing leakage currents as a function of reverse bias. The current-voltage characteristics were simulated and fitted by incorporating trap assisted tunneling via traps and Shockley-Read-Hall generation recombination process due to dislocations in the carrier transport equations. The thermal suppression of carriers was simulated by taking energy level of trap (E-t), trap density (N-t) and the doping concentrations of n(+) and v regions as fitting parameters. Values of E-t and N-t were 0.78E(g) and similar to 6-9 x 10(14) cm(-3) respectively for most of the diodes. Variable temperature current voltage measurements on variable area diode array (VADA) structures confirmed the fact that variation in zero bias resistance area product (R(0)A) is related to g-r processes originating from variation in concentration and kind of defects that intersect a junction area. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependent current transport properties of nonpolar a-plane (11 2 0) InN/GaN heterostructure Schottky junction were investigated. The barrier height ( b) and ideally factor (η) estimated from the thermionic emission (TE) model were found to be temperature dependent in nature. The conventional Richardson plot of the ln(I s/T 2) versus 1/kT has two regions: the first region (150-300 K) and the second region (350-500 K). The values of Richardson constant (A +) obtained from this plot are found to be lower than the theoretical value of n-type GaN. The variation in the barrier heights was explained by a double Gaussian distribution with mean barrier height values ( b ) of 1.17 and 0.69 eV with standard deviation (� s) of 0.17 and 0.098 V, respectively. The modified Richardson plot in the temperature range 350-500 K gives the Richardson constant which is close to the theoretical value of n-type GaN. Hence, the current mechanism is explained by TE by assuming the Gaussian distribution of barrier height. At low temperature 150-300 K, the absence of temperature dependent tunneling parameters indicates the tunneling assisted current transport mechanism. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, the currentvoltage (IV) characteristics of Au/GaN Schottky diodes have been carried out in the temperature range of 300510?K. The estimated values of the Schottky-barrier height (SBH) and the ideality factor of the diodes based on the thermionic emission (TE) mechanism were found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The conventional Richardson plot of ln(Is/T2) versus 1/kT gives the SBH of 0.51?eV and Richardson constant value of 3.23?X?10-5?A?cm-2?K-2 which is much lower than the known value of 26.4?A?cm-2?K-2 for GaN. Such discrepancies of the SBH and Richardson constant value were attributed to the existence of barrier-height inhomogeneities at the Au/GaN interface. The modified Richardson plot of ln(Is/T2)q2 sigma 2/2k2T2 versus q/kT, by assuming a Gaussian distribution of barrier heights at the Au/GaN interface, provided the SBH of 1.47?eV and Richardson constant value of 38.8?A?cm-2?K-2. The temperature dependence of the barrier height is interpreted on the basis of existence of the Gaussian distribution of the barrier heights due to the barrier-height inhomogeneities at the Au/GaN interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Othman et al. (Intermetallics 2012;22:1-6) recently published a manuscript on ``Effects of current density on the formation and microstructure of Sn-9Zn, Sn-8Zn-3Bi and Sn-3Ag-0.5Cu solder joints''. We found problems in calculation of diffusion parameters. Even the comment on the formation of Cu5Zn8 instead of Cu6Sn5 is not correct. In this comment, we have explained the correct procedure to calculate the diffusion coefficients. Further, we have also explained the reason for the formation of Cu5Zn8 instead of Cu6Sn5 in the Cu/Sn-9Zn system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we observe gate tunable negative differential conductance (NDC) and current saturation in single layer and bilayer graphene transistor at high source-drain field, which arise due to the interplay among (1) self-heating, (2) hot carrier injection, and (3) drain induced minority carrier injection. The magnitude of the NDC is found to be reduced for a bilayer, in agreement with its weaker carrier-optical phonon coupling and less efficient hot carrier injection. The contributions of different mechanisms to the observed results are decoupled through fast transient measurements with nanosecond resolution. The findings provide insights into high field transport in graphene. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4754103]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The financial crisis set off by the default of Lehman Brothers in 2008 leading to disastrous consequences for the global economy has focused attention on regulation and pricing issues related to credit derivatives. Credit risk refers to the potential losses that can arise due to the changes in the credit quality of financial instruments. These changes could be due to changes in the ratings, market price (spread) or default on contractual obligations. Credit derivatives are financial instruments designed to mitigate the adverse impact that may arise due to credit risks. However, they also allow the investors to take up purely speculative positions. In this article we provide a succinct introduction to the notions of credit risk, the credit derivatives market and describe some of the important credit derivative products. There are two approaches to pricing credit derivatives, namely the structural and the reduced form or intensity-based models. A crucial aspect of the modelling that we touch upon briefly in this article is the problem of calibration of these models. We hope to convey through this article the challenges that are inherent in credit risk modelling, the elegant mathematics and concepts that underlie some of the models and the importance of understanding the limitations of the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse width modulation (PWM) techniques involving different switching sequences are used in space vector-based PWM generation for reducing line current ripple in induction motor drives. This study proposes a hybrid PWM technique employing five switching sequences. The proposed technique is a combination of continuous PWM, discontinuous PWM (DPWM) and advanced bus clamping PWM methods. Performance of the proposed PWM technique is evaluated and compared with those of the existing techniques on a constant volts per hertz induction motor drive. In terms of total harmonic distortion in the line current, the proposed method is shown to be superior to both conventional space vector PWM (CSVPWM) and DPWM over a fundamental frequency range of 32-50 Hz at a given average switching frequency. The reduction in harmonic distortion is about 42% over CSVPWM at the rated speed of the drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface electrodes are essentially required to be switched for boundary data collection in electrical impedance tomography (Ell). Parallel digital data bits are required to operate the multiplexers used, generally, for electrode switching in ELT. More the electrodes in an EIT system more the digital data bits are needed. For a sixteen electrode system. 16 parallel digital data bits are required to operate the multiplexers in opposite or neighbouring current injection method. In this paper a common ground current injection is proposed for EIT and the resistivity imaging is studied. Common ground method needs only two analog multiplexers each of which need only 4 digital data bits and hence only 8 digital bits are required to switch the 16 surface electrodes. Results show that the USB based data acquisition system sequentially generate digital data required for multiplexers operating in common ground current injection method. The profile of the boundary data collected from practical phantom show that the multiplexers are operating in the required sequence in common ground current injection protocol. The voltage peaks obtained for all the inhomogeneity configurations are found at the accurate positions in the boundary data matrix which proved the sequential operation of multiplexers. Resistivity images reconstructed from the boundary data collected from the practical phantom with different configurations also show that the entire digital data generation module is functioning properly. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn indicates a sequential and proper operation of multiplexers.

Relevância:

20.00% 20.00%

Publicador: