224 resultados para Cobalt-supported catalyst


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ytterbium triflate catalyses the deprotection of tert-butyl esters selectively in the presence of other esters under mild conditions in almost quantitative yields. The reactions are carried out in nitromethane (45degrees - 50degreesC) using 5 mole percent of the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of thermal degradation of poly(vinyl chloride) (PVC) in solution was investigated at various temperatures (210-250degreesC). The degradation rate coefficients were determined from the time evolution of the molecular weight distribution (MWD). The energy of activation, determined from the temperature dependence of the rate coefficient, was 26.6 kcal/mol. The degradation of PVC was also studied in the presence of a catalyst (HZSM-5 zeolite). The results indicated that increase of the degradation rate of PVC is first order with the HZSM-5 concentration up to 50 g/L and zero order at higher concentrations. The thermal degradation kinetics of PVC in the presence of 50 g/L of the catalyst was studied at various temperatures. The temperature dependency of the rate coefficient was used to calculate the activation energy (21.5 kcal/mol). This is consistent with the observation that the presence of a catalyst generally decreases the activation energy and promotes degradation. (C) 2002 John Wiley Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the microstructure of thin films grown by metal-organic chemical vapour deposition using a beta-diketonate complex of cobalt, namely cobalt (11) acetylacetonate. Films were deposited on three different substrates: Si(100), thermally oxidised silicon [SiO2/Si(100)] and glass at the same time. As-grown films were characterised by X-ray diffraction, scanning electron microscopy, scanning tunnelling microscopy, atomic force microscopy and secondary ion mass spectrometry. Electrical resistivity was measured for all the films as a function of temperature. We found that films have very fine grains, resulting in high electrical resistivity Further, film microstructure has a strong dependence on the nature of the substrate and there is diffusion of silicon and oxygen into cobalt from the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic oxidation and decomposition of NH3 have been carried out over combustion synthesized Al2O3 and CeO2 supported Pt, Pd and Ag catalysts using temperature programmed reaction (TPR) technique in a packed bed tubular reactor. Metals are ionically dispersed over CeO2 and fine metal particles are found on Al2O3. NH3 oxidation occurs over 1% Pt/Al2O3, 1% Pd/Al2O3 and 1% Ag/Al2O3 at 175, 270 and 350 C respectively producing N-2, NO, N2O and H2O, whereas 1% Pt/CeO2, 1% Pd/CeO2 and 1% Ag/CeO2 give N-2 along with NO, N2O and H2O at 200, 225 and 250degreesC respectively. N-2 predominates over other nitrogen-containing products during the reaction on all catalysts. At less O-2 concentration, N-2 and H2O are the only products obtained during NH3 Oxidation. NH3 decomposition over all the catalysts occurs above 450degreesC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd-coated Ni nanoparticles of 50 +/- 15 nm size are prepared by the polyol method and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and thermogravimetry analysis. Surface coverage of Pd on Ni particles is less than a monolayer for 0.5 and 1 at% Pd-coated Ni. Quantitative conversion of nitrobenzene to aniline is observed over these Pd-coated Ni particles at 27degreesC under one atmospheric pressure of hydrogen. 0.5 and 1 at% Pd-coated Ni exhibits 10 times greater activity than that of typical colloidal palladium and platinum catalysts and 2.5 times higher activity than commercial 5 wt% Pd/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion synthesized Ag/CeO2 catalysts have been characterized by Extended Xray Absorption Fine Structure (EXAFS) spectroscopy at the Ag K-edge. It has been found that Ag+ like species is present in 1% Ag/CeO2 catalyst, whereas mostly Ag metal clusters are found in 3% Ag/CeO2. The analysis of EXAFS spectra indicates that about one oxygen atom is coordinated to Ag central atom at a distance of 2.19 Angstrom in 1% Ag/CeO2 catalyst along with eight coordinated Ag-Ag bond at 2.86 Angstrom. The Ag-O bond is absent in 3% Ag/CeO2. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of cobalt oxide have been deposited on various substrates, such as glass, Si(100), SrTiO3(100), and LaAlO3(100), by low pressure metalorganic chemical vapor deposition (MOCVD) using cobalt(IL), acetylacetonate as the precursor. Films obtained in the temperature range 400-600 degreesC were uniform and highly crystalline having Co3O4 phase as revealed by x-ray diffraction. Under similar conditions of growth, highly oriented thin films of cobalt oxide grow on SrTiO3(100) and LaAlO3(100). The microstructure and the surface morphology of cobalt oxide films on glass, Si(100) and single crystalline substrates, SrTiO3(100) and LaAlO3(100) were studied by scanning electron microscopy. Optical properties of the films were studied by uv-visible-near IR spectrophotometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cobalt oxalato-squarate of the formula [Co-2(C4O4)(C2O4)(C3N2H4)(2)], containing a ligated amine has been synthesized hydrothermally and its structure determined by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group P2(1)2(1)2 with a = 18.3845(8) Angstrom, b = 5.7884(3) Angstrom, c = 7.2598(4) Angstrom, V = 772.56(7)Angstrom(3) and Z = 4. It has a layered structure where two-dimensional sheets are formed by the connectivity of the squarate and the oxalate units with the cobalt centres, with the ligating amine molecules protruding out from the layers. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limiting solutions are derived for the flexure of simply supported many-sided regular polygons, as the number of sides is increased indefinitely. It is shown that these solutions are different from those for simply supported circular plates. For axisymmetric loading, circular plate solutions overestimate the deflexions and the moments by significant factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce(1-x)Ru(x)O(2-delta) (0 <= x <= 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce(0.95)Ru(0.05)O(2-delta) (5% Ru(4+) ion substituted in CeO(2)) showed very high WGS activity in terms of high conversion rate (20.5 mu mol.g(-1).s(-1) at 275 degrees C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO(2) by H(2)O is observed with 100% H(2) selectivity at >= 275 degrees C. In presence of externally fed CO(2) and H(2) also, complete conversion of CO to CO(2) was observed with 100% H(2) selectivity in the temperature range of 305-385 degrees C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru(4+) ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru(4+) ionic state in the Ce(1-x)Ru(x)O(2-delta) catalyst.