251 resultados para Carbon nano onions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durability is central to the commercialization of polymer electrolyte fuel cells (PEFCs). The incorporation of TiO2 with platinum (Pt) ameliorates both the stability and catalytic activity of cathodes in relation to pristine Pt cathodes currently being used in PEFCs. PEFC cathodes comprising carbon-supported Pt-TiO2 (Pt-TiO2/C) exhibit higher durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance, and cyclic voltammetry data. The degradation in performance of the Pt-TiO2/C cathodes is 10% after 5000 test cycles as against 28% for Pt/C cathodes. These data are in conformity with the electrochemical surface area and impedance values. Pt-TiO2/C cathodes can withstand even 10,000 test cycles with nominal effect on their performance. X-ray diffraction, transmission electron microscope, and cross-sectional field-emission-scanning electron microscope studies on the catalytic electrodes reflect that incorporating TiO2 with Pt helps in mitigating the aggregation of Pt particles and protects the Nafion membrane against peroxide radicals formed during the cathodic reduction of oxygen. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3421970] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes have been prepared by pyrolysing tetrahydrofuran (THF) in the presence of nickelocene. Pyrolysis of the precursor mixture has been achieved at temperature as low as 600 degrees C. In this simple approach no carrier gas has been used. The yield of purified carbon nanotubes is found to be more than 65%. Characterization of the as-prepared and purified nanotubes are done by Xray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacementburst observed while indenting the nanowire. `Wire-only hardness' obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanorods of several oxides, with diameters in the range of 10-200 nm and lengths upto a few microns, have been prepared by templating against carbon nanotubes. The oxides include V2O5, WO3, MoO3 and Sb2O5 as well as metallic MoO2, RuO2 and IrO2. The nanorods tend to be single-crystalline structures. Nanotube structures have also been obtained in MoO3 and RuO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodes made of purified and open single walled carbon nanotubes behave like metal hydride electrodes in Ni-MH batteries, showing high electrochemical reversible charging capacity up to 800 mAh g(-1) corresponding to a hydrogen storage capacity of 2.9 wt% compared to known AB(5), AB(2) metal hydride electrodes. (C) 2000 Elsevier Science Ltd. All rights reserved.