239 resultados para Cable-Driven Parallel Manipulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a critical investigation on the structural, magnetic, and magnetotransport properties of two sets of polycrystalline SrRuO3 samples with uniquely defined ferromagnetic transition temperatures. The ac magnetic susceptibility study exhibits the remarkable memory effect, a distinct characteristic of glassy behavior, at low temperatures. The transport study suggests a crossover from Fermi-liquid to non-Fermi-liquid behavior. Most strikingly, the temperature-dependent magnetoresistance exhibits two distinct dips (one around ferromagnetic ordering temperature and the other around 50 K), resembling a double-well potential in appearance. In addition, the temperature-dependent coercive field shows a plateau around 50 K. An attempt has been made to employ neutron diffraction to understand the genesis of such unusual low-temperature magnetic features. From the neutron-diffraction study, we find the evidence for changes in the unit-cell lattice parameters around 60 K and, thus, believe that the low-temperature anomalous magnetic response is closely intertwined to lattice-parameter change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Morse-Smale complex is a topological structure that captures the behavior of the gradient of a scalar function on a manifold. This paper discusses scalable techniques to compute the Morse-Smale complex of scalar functions defined on large three-dimensional structured grids. Computing the Morse-Smale complex of three-dimensional domains is challenging as compared to two-dimensional domains because of the non-trivial structure introduced by the two types of saddle criticalities. We present a parallel shared-memory algorithm to compute the Morse-Smale complex based on Forman's discrete Morse theory. The algorithm achieves scalability via synergistic use of the CPU and the GPU. We first prove that the discrete gradient on the domain can be computed independently for each cell and hence can be implemented on the GPU. Second, we describe a two-step graph traversal algorithm to compute the 1-saddle-2-saddle connections efficiently and in parallel on the CPU. Simultaneously, the extremasaddle connections are computed using a tree traversal algorithm on the GPU.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative `Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed `3interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lead free ferroelectric Na1/2Bi1/2TiO3 (NBT) is shown to exhibit electric-field-induced monoclinic (Cc) to rhombohedral (R3c) phase transformation at room temperature. This phenomenon has been analyzed both from the viewpoint of the intrinsic polarization rotation and adaptive phase models. In analogy with the morphotropic phase boundary systems, NBT seems to possess intrinsic competing ferroelectric instabilities near room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of functional materials via grain growth engineering implicitly relies on altering the mobilities of grain boundaries (GBs) by applying external fields. Although computer simulations have alluded to kinetic roughening as a potential mechanism for modifying GB mobilities, its implications for grain growth have remained largely unexplored owing to difficulties in bridging the widely separated length and time scales. Here, by imaging GB particle dynamics as well as grain network evolution under shear, we present direct evidence for kinetic roughening of GBs and unravel its connection to grain growth in driven colloidal polycrystals. The capillary fluctuation method allows us to quantitatively extract shear-dependent effective mobilities. Remarkably, our experiments reveal that for sufficiently large strains, GBs with normals parallel to shear undergo preferential kinetic roughening, resulting in anisotropic enhancement of effective mobilities and hence directional grain growth. Single-particle level analysis shows that the mobility anisotropy emerges from strain-induced directional enhancement of activated particle hops normal to the GB plane. We expect our results to influence materials fabrication strategies for atomic and block copolymeric polycrystals as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the variation of glass transition temperature in supported thin films of polymer nanocomposites, consisting of polymer grafted nanoparticles embedded in a homopolymer matrix. We observe a systematic variation of the estimated glass transition temperature T-g, with the volume fraction of added polymer grafted nanoparticles. We have correlated the observed T-g variation with the underlying morphological transitions of the nanoparticle dispersion in the films. Our data also suggest the possibility of formation of a low-mobility glass or gel-like layer of nanoparticles at the interface, which could play a significant role in determining T-g of the films provided. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4773442]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named Reddy tube, include study of blast-induced traumatic brain injuries and high temperature chemical kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identical parallel-connected converters with unequal load sharing have unequal terminal voltages. The difference in terminal voltages is more pronounced in case of back-to-back connected converters, operated in power-circulation mode for the purpose of endurance tests. In this paper, a synchronous reference frame based analysis is presented to estimate the grid current distortion in interleaved, grid-connected converters with unequal terminal voltages. Influence of carrier interleaving angle on rms grid current ripple is studied theoretically as well as experimentally. Optimum interleaving angle to minimize the rms grid current ripple is investigated for different applications of parallel converters. The applications include unity power factor rectifiers, inverters for renewable energy sources, reactive power compensators, and circulating-power test set-up used for thermal testing of high-power converters. Optimum interleaving angle is shown to be a strong function of the average of the modulation indices of the two converters, irrespective of the application. The findings are verified experimentally on two parallel-connected converters, circulating reactive power of up to 150 kVA between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of detecting cells in biological images. The problem is important in many automated image analysis applications. We identify the problem as one of clustering and formulate it within the framework of robust estimation using loss functions. We show how suitable loss functions may be chosen based on a priori knowledge of the noise distribution. Specifically, in the context of biological images, since the measurement noise is not Gaussian, quadratic loss functions yield suboptimal results. We show that by incorporating the Huber loss function, cells can be detected robustly and accurately. To initialize the algorithm, we also propose a seed selection approach. Simulation results show that Huber loss exhibits better performance compared with some standard loss functions. We also provide experimental results on confocal images of yeast cells. The proposed technique exhibits good detection performance even when the signal-to-noise ratio is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the coupling of High Power Microwaves with a buried twisted pair cable. The electric field at a distance of 1km from the HPM antenna has been computed and is used for further computation of induced voltage and current. It is found that the peak of the induced current and voltage in a buried unshielded twisted pair cable at a distance of 1km from an HPM antenna of power level 10GW is 20A and 2kV respectively.