247 resultados para CONSTANT MEAN-CURVATURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were carried out investigating the features of mean and unsteady surface pressure fluctuations in boat-tail separated flows relevant to launch vehicle configurations at transonic speeds. The tests were performed on a generic axisymmetric body in the Mach-number range of 0.7-1.2, and the important geometrical parameters, namely, the boat-tail angle and diameter ratio, were varied systematically. The measurements made included primarily the mean and unsteady surface-pressure fluctuations on nine different model configurations. Flow-visualization studies employing a surface oil flow, and schlieren techniques were carried out to infer features like boundary-layer separation, reattachment, and shock waves in the flow. The features of mean and fluctuating surface pressures are discussed in detail including aspects of similarity. It has been observed that, on a generic configuration employed in the present study, the maximum levels of surface-pressure fluctuations in the reattachment zone are appreciably lower than those found on launch vehicle configurations having a bulbous or hammerhead nose shape. A simple correlation is suggested for the maximum value of rms pressure fluctuations in the reattachment zone at different freestream Mach numbers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal lung and liver tissues were examined by ultrasound in 240 subjects during 24 to 38 weeks of gestational age in order to investigate the feasibility of predicting the maturity of the lung from the textural features of sonograms. A region of interest of 64 X 64 pixels is used for extracting textural features. Since the histological properties of the liver are claimed to remain constant with respect to gestational age, features obtained from the lung region are compared with those from liver. Though the mean values of some of the features show a specific trend with respect to gestation age, the variance is too high to guarantee definite prediction of the gestational age. Thus, we restricted our purview to an investigation into the feasibility of fetal lung maturity prediction using statistical textural features. Out of 64 features extracted, those features that are correlated with gestation age and less computationally intensive are selected. The results of our study show that the sonographic features hold some promise in determining whether the fetal lung is mature or immature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide, cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure thermometers and thermostatic expansion valves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a model of the solar dynamo in which, on the one hand, we follow the Babcock-Leighton approach to include surface processes, such as the production of poloidal field from the decay of active regions, and, on the other hand, we attempt to develop a mean field theory that can be studied in quantitative detail. One of the main challenges in developing such models is to treat the buoyant rise of the toroidal field and the production of poloidal field from it near the surface. A previous paper by Choudhuri, Schüssler, & Dikpati in 1995 did not incorporate buoyancy. We extend this model by two contrasting methods. In one method, we incorporate the generation of the poloidal field near the solar surface by Durney's procedure of double-ring eruption. In the second method, the poloidal field generation is treated by a positive α-effect concentrated near the solar surface coupled with an algorithm for handling buoyancy. The two methods are found to give qualitatively similar results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion terms in the mean velocity and temperature equations of turbulent flow are analysed to decide when variations of fluid properties can produce appreciable errors. # A theoretical demonstration is given that in the mean-flow continuity equation for a gas the error in assuming constant density is small if the flow is turbulent, even when the temperature variations are large. # Separate discussion is given of the case of local heat sources in turbulence, as large errors can occur there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider here the higher order effect of moderate longitudinal surface curvature on steady, two-dimensional, incompressible laminar boundary layers. The basic partial differential equations for the problem, derived by the method of matched asymptotic expansions, are found to possess similarity solutions for a family of surface curvatures and pressure gradients. The similarity equations obtained by this anaylsis have been solved numerically on a computer, and show a definite decrease in skin friction when the surface has convex curvature in all cases including zero pressure gradient. Typical velocity profiles and some relevant boundary-layer characteristics are tabulated, and a critical comparison with previous work is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear stability and the nonmodal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the uniform shear flow with constant viscosity, and (b) the nonuniform shear flow with stratified viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (M). For a given M, the critical Reynolds number (Re) is significantly smaller for the uniform shear flow than its nonuniform shear counterpart; for a given Re, the dominant instability (over all streamwise wave numbers, α) of each mean flow belongs to different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean flow to perturbations. It is shown that the energy transfer from mean flow occurs close to the moving top wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II.” For the nonmodal transient growth analysis, it is shown that the maximum temporal amplification of perturbation energy, Gmax, and the corresponding time scale are significantly larger for the uniform shear case compared to those for its nonuniform counterpart. For α=0, the linear stability operator can be partitioned into L∼L̅ +Re2 Lp, and the Re-dependent operator Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t∕Re)∼Re2. In contrast, the dominance of Lp is responsible for the invalidity of this scaling law in nonuniform shear flow. An inviscid reduced model, based on Ellingsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and nonmodal instability, it is shown that the viscosity stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.