246 resultados para COLLOIDAL SILVER NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil properties and their behavior, apart from stress history, are influenced markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton’s colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton’s colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil properties and their behavior, apart from stress history, are influence markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton's colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton's colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic-inorganic composite material is obtained by self-assembly of 2,3-didecyloxy-anthracene (DDOA), an organogelator of butanol, and organic-capped ZnO nanoparticles (NPs). The ligand 3, 2,3-di(6-oxy-n-hexanoic acid)-anthracene, designed to cap ZnO and interact with the DDOA nanofibers by structural similarity, improves the dispersion of the NPs into the organogel. The composite material displays mechanical properties similar to those of the pristine DDOA organogel, but gelates at a lower critical concentration and emits significantly less, even in the presence of very small amounts of ZnO NPs. The ligand 3 could also act as a relay to promote the photo-induced quenching process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanoparticles (ZnO NPs) were grown on the surface of multiwall carbon nanotubes (MWCNTs) by a wet chemical synthesis route. The anchoring of ZnO NPs on acid-treated MWCNTs was achieved under remarkably mild reaction conditions (low temperature, atmospheric pressure, without any capping agents and no need for subsequent thermal annealing). MWCNT/ZnO NPs hybrid samples with varying loading of ZnO NPs are prepared. A very high degree of dispersion of ZnO NPs over the surface of MWCNT was achieved by suitably controlling the ratio of ZnO NPs and MWCNTs in the solution. The hybrid sample was characterized by electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). Transmission electron microscope images of the as-prepared MWCNT/ZnO NPs hybrid reveal that mono-dispersed ZnO NPs are anchored stably on functionalized MWCNTs. The interaction of ZnO NPs with MWCNT surface was interpreted through XPS analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Are evaporation of graphite with Fe, Co and Ni yields two distinct types of metal nanoparticles, wrapped in graphitic layers and highly resistant to oxidation. Electron microscopy shows that the metal particles (10-40 nm) in the stub region are encapsulated in carbon onions, the particles in the soot being considerably smaller (2-15 nm). The metal particles in the soot are either ferromagnetic with lowered Curie temperatures or superparamagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in the electronic and magnetic properties of graphene induced by interaction with semiconducting oxide nanoparticles such as ZnO and TiO2 and with magnetic nanoparticles such as Fe3O4, CoFe2O4, and Ni are investigated by using Raman spectroscopy, magnetic measurements, and first-principles calculations. Significant electronic and magnetic interactions between the nanoparticles and graphene are found. The findings suggest that changes in magnetization as well as the Raman shifts are directly linked to charge transfer between the deposited nanoparticles and graphene. The study thus demonstrates significant effects in tailoring the electronic structure of graphene for applications in futuristic electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new synthetic strategies to obtain mono-disperse metal nanoparticles on large scales is an attractive prospect in the context of sustainability. Recently, amine-boranes, the classical Lewis acid-base adducts, have been employed as reducing agents for the synthesis of metal nanoparticles. They offer several advantages over the traditional reducing agents like the borohydrides; for example, a much better control of the rate of reduction and, hence, the particle size distribution of metal nanoparticles; diversity in their reducing abilities by varying the substituents on the nitrogen atom; and solubility in various protic and aprotic solvents. Amine-boranes have not only been used successfully as reducing agents in solution but also in solventless conditions, in which along with the reduction of the metal precursor, they undergo in situ transformation to afford the stabilizing agent for the generated metal nanoparticles, thereby bringing about atom economy as well. The use of amine boranes for the synthesis of metal nanoparticles has experienced an explosive growth in a very short period of time. In this Minireview, recent progress on the use of amine boranes for the synthesis of metal nanoparticles, with a focus towards the development of pathways for sustainability, is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolution of barium ion from aqueous suspensions of commercial nano-sized barium titanate powders (BaTiO3) has been studied at various pH values, solids loading, different time intervals and different electrolyte concentrations. Zeta potential measurements at various pH values and Fourier transform infrared spectroscopy study were also carried out to know the surface behaviour. Dissolution of Ba2+ depends on the suspension pH and stirring time period. The iso-electric points were found at 3.4 and 12.2 for as-received BaTiO3 powder and 2.3 for the leached BaTiO3. The Ba2+-leached BaTiO3 suspension retards further leaching of Ba2+ ions at different pH values, which favours the achievement of stable suspension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared stable colloidal suspensions in a lyotropic liquid crystal exhibiting an isotropic-nematic-lamellar phase sequence. Small angle neutron scattering (SANS) and dynamic light scattering (DLS) studies show the existence of attractive interparticle interactions in the nematic phase, which lead to a gas-liquid transition of the particles. The resulting liquid phase is weakly anisotropic. Further, the nematic-lamellar transition of the liquid crystal is found to be accompanied by a liquid-solid transition of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.