320 resultados para CARBOXYLIC-ACID
Resumo:
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics. The compound could be readily hydrolysed to retinoic acid both by acid and alkali treatments and reduced by lithium aluminium hydride to vitamin A alcohol (retinol). The spectral changes with antimony trichloride reagent were similar to those observed for retinoic acid. The metabolism of retinoic acid anhydride was found to be similar to that of retinoic acic. When administered either orally or intraperitoneally, the compound promotes growth in vitamin A-deficient rats. Time-course experiments revealed that retinoic acid anhydride is converted into retinoic acid by non-enzymatic hydrolysis and thereby exerts its biological activity. The biopotency of the anhydride was found to be nearly the same as that of the acid. A new method of preparing esters of retinoic acid employing retinoic acid anhydride as an intermediate, has been described.
Resumo:
2-Phenethyl alcohol (2-PEA) and 2-phenyllactic acid (2-PLA) were isolated from the culture filtrates of Candida species grown in media containing peptone or phenylalanine as nitrogen source. These compounds were characterized by comparing their UV, IR, and NMR spectral properties with authentic samples. Candida species differed markedly in their production of 2-PEA and 2-PLA. Experiments using [14C]-phenylalanine indicated that both 2-PEA and 2-PLA are synthesised from L-phenylalanine. A pathway for the biosynthesis of 2-PEA from L-phenylalanine has been proposed.
Resumo:
Sphingomyelin was hydrolyzed to ceramide near quantitatively on treatment with 40% HF at 40°C for 72 hr. The reaction of sphingomyelin with HF is much slower than phosphoglycerides. HF treatment did not alter either the fatty acid composition or the stereochemical configuration of the sphingosine moiety of ceramide formed.
Resumo:
THE unusual amino acid beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (ODAP), isolated from the seeds of Lathyrus sativus is a potent neurotoxin1−3. It produces biochemical changes in the brain typical of an excitant amino acid and is implicated in the aetiology of human neurolathyrism caused by eating the seeds of L. sativus 4−6. It may act as a glutamate antagonist: ODAP inhibits glutamate oxidation7 possibly by inhibiting glutamate uptake in bovine brain mitochondria; it also acts as a competitive inhibitor of glutamate uptake in certain strains of yeast8, and a similar process might occur at the synaptic level. Any effect of ODAP on glutamate uptake at synapses is significant in view of the neurotransmitter function of glutamate, which seems to be neuroexcitory as well as neurotoxic9−12. But Balcar and Johnston13 have shown with rat brain slices that ODAP does not inhibit the glutamate uptake by the high affinity system.
Resumo:
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
The complex crystallizes in the space group P21/c with four formula units in a unit cell of dimensions a= 12.747, b= 7.416, c= 17.894 A and/3= 90.2 °. The structure has been solved by the symbolic addition procedure using three-dimensional photographic data and refined to an R value of 0.079 for 2019 observed reflexions. The pyramidal nature of the two hetero nitrogen atoms in the antipyrine molecule is inter:nediate between that observed in free antipyrine and in some of its metal complexes. The molecule is more polar than that in crystals of free antipyrine but less so compared with that in metal complexes. In the salicylic acid molecule, the hydroxyl group forms an internal hydrogen bond with one of the oxygen atoms in the carboxyl group. The association between the salicylic acid and the antipyrine molecules is achieved through an intermolecular hydrogen bond with the other carboxyl oxygen atom in the salicylic acid molecule as the proton donor and the carboxyl oxygen atom of the antipyrine molecule as the acceptor.
Resumo:
Temperature dependence of chlorine nuclear quadrupole resonance in 2-chloro 5-nitrobenzoic acid and 4-chloro 3-nitrobenzoic acid has been investigated in the region 77° K to room temperature. No phase transition has been observed. The results are analysed to obtain the torsional frequencies and their temperature dependence. A nonlinear temperature dependence is obtained for the torsional frequencies.
Resumo:
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.
Resumo:
The chemical basis of the specificity of proteinnucleic acid interaction, as seen in many biochemical phenomena such as the organization of nucleoprotein complexes (~hro~atin. ribosomes) and gene expression and its regulation, IS not yet understood.A knowledge of such specific interactions is also essential for tracing the chemical evolution of life based an the coupling between protein and nucleic acid and the origin of genetic code [I ,I?].
Resumo:
The porphyrogenic drug allylisopropylacetamide, a potent inducer of delta-aminolaevulinate synthetase, specifically increases nucleoplasmic RNA synthesis in rat liver. The drug-mediated increase in nucleoplasmic RNA synthesis is blocked by cycloheximide and haemin, which also inhibit the enzyme induction.
Resumo:
S-Labeled nucleosides of E. coli tRNA and some of the derivatives of thionucleosides were separated on Bio-Gel P-2 and Sephadex G-10 columns employing buffers of low salt concentration and high pH.
Resumo:
Preliminary studies on the metabolism of mandelic acid by Neurospora crassa reveal the operation of a pathway for its degradation which involves benzoyl formic acid, benzaldehyde, benzoic acid, 4-hydroxybenzoic acid, and protocatechuic acid as the intermediates. This pathway is different from that followed by bacterial systems and is the same as that observed in Aspergillus niger.
Resumo:
A single administration of 2-allyl-2-isopropylacetamide, a porphyrinogenic drug, enhanced the 32P-labelling of nucleoplasmic as well as cytoplasmic poly(A)-containing RNA in rat liver. The synthesis of total microsomal RNA is only marginally increased under these conditions. The drug enhances the labelling of a variety of cytoplasmic poly(A)-containing RNA species, and this effect is counteracted by the simultaneous administration of haemin. 2-Allyl-2-isopropylacetamide also enhanced the release of RNA from the nucleus to the cytoplasm.