153 resultados para Bond cycles
Resumo:
Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Two shape-persistent covalent cages (CC1(r) and CC2(r)) have been devised from triphenyl amine-based trialdehydes and cyclohexane diamine building blocks utilizing the dynamic imine chemistry followed by imine bond reduction. The cage compounds have been characterized by several spectroscopic techniques which suggest that CC1(r) and CC2(r) are 2+3] and 8+12] self-assembled architectures, respectively. These state-of-the-art molecules have a porous interior and stable aromatic backbone with multiple palladium binding sites to engineer the controlled synthesis and stabilization of ultrafine palladium nanoparticles (PdNPs). As-synthesized cage-embedded PdNPs have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Inductively coupled plasma optical emission spectrometry reveals that Pd@CC1(r) and Pd@CC2(r) have 40 and 25 wt% palladium loading, respectively. On the basis of TEM analysis, it has been estimated that as small as similar to 1.8 nm PdNPs could be stabilized inside the CC1(r), while larger CC2(r) could stabilize similar to 3.7 nm NPs. In contrast, reduction of palladium salts in the absence of the cages form structure less agglomerates. The well-dispersed cage-embedded NPs exhibit efficient catalytic performance in the cyanation of aryl halides under heterogeneous, additive-free condition. Moreover, these materials have excellent stability and recyclability without any agglomeration of PdNPs after several cycles.
Resumo:
Hydrogen bonds in biological macromolecules play significant structural and functional roles. They are the key contributors to most of the interactions without which no living system exists. In view of this, a web-based computing server, the Hydrogen Bonds Computing Server (HBCS), has been developed to compute hydrogen-bond interactions and their standard deviations for any given macromolecular structure. The computing server is connected to a locally maintained Protein Data Bank (PDB) archive. Thus, the user can calculate the above parameters for any deposited structure, and options have also been provided for the user to upload a structure in PDB format from the client machine. In addition, the server has been interfaced with the molecular viewers Jmol and JSmol to visualize the hydrogen-bond interactions. The proposed server is freely available and accessible via the World Wide Web at http://bioserver1.physics.iisc.ernet.in/hbcs/.