357 resultados para Alternative Liquid Fuels
Resumo:
In the present work the integral diffusion coefficients are estimated by using the diaphragm cell technique. The diffusion coefficients are measured at various compositions for two sets binary systems: one of cyclohexane and n-paraffinic alcohols and the other of methylcyclohexane and n-paraffinic alcohols. The alcohols used are seven members of homologous series of n-paraffinic alcohols from ethanol to octanol. The maximum possible error in the experimental diffusion coefficient could be 8% for both the cyclohexane-n-alkyl alcohol system and methylcyclohexane-n-alkyl alcohol system. A correlation for each of the two sets of binary systems is given. The maximum deviation in the correlations was less than 6.5 and 3.5% for cyclohexane-n-alkyl alcohols and methylcyclohexane-n-alkyl alcohols, respectively.
Resumo:
A molecular theory of dielectric relaxation in a dense binary dipolar liquid is presented. The theory takes into account the effects of intra- and interspecies intermolecular interactions. It is shown that the relaxation is, in general, nonexponential. In certain limits, we recover the biexponential form traditionally used to analyze the experimental data of dielectric relaxation in a binary mixture. However, the relaxation times are widely different from the prediction of the noninteracting rotational diffusion model of Debye for a binary system. Detailed numerical evaluation of the frequency-dependent dielectric function epsilon-(omega) is carried out by using the known analytic solution of the mean spherical approximation (MSA) model for the two-particle direct correlation function for a polar mixture. A microscopic expression for both wave vector (k) and frequency (omega) dependent dielectric function, epsilon-(k,omega), of a binary mixture is also presented. The theoretical predictions on epsilon-(omega) (= epsilon-(k = 0, omega)) have been compared with the available experimental results. In particular, the present theory offers a molecular explanation of the phenomenon of fusing of the two relaxation channels of the neat liquids, observed by Schallamach many years ago.
Resumo:
The mutual diffusion coefficients for binary liquid systems of benzene-n-alkyl alcohol at various compositions have been determined by the diaphragm cell method at 28-degrees-C. The alcohols used were the members of n-paraffinic alcohols ranging from C1 to C8. The maximum possible experimental error is 14%. The data were fitted with a generalized correlation, giving the deviation from the experimental data to within 2.75%, on average.
Resumo:
Silver nitrate-acetonitrile and π iodine-benzene complexes in thermotropic liquid crystals have been studied by 1H, 2H, and 13C NMR spectroscopy and by optical microscopy. Evidence for at least two silver complexes in each liquid crystal is presented.
Resumo:
Many process-control systems are air-operated. In such an environment, it would be desirable and economical to use pneumatic sensors. Bubble-back pressure sensors perform quite satisfactorily, but in case of viscous inflammable and slurry-like liquids with a tendency to froth, this level sensor is inadequate. The method suggested in this paper utilizes a pneumatic capacitor, one boundary of which is formed by the liquid level, to modulate a fluid amplifier feedback oscillator. The absence of moving parts and economy obtained makes this method attractive for process-control applications. The system has been mathematically modeled and simulated on an IBM 360/44 digital computer. Experimental values compare fairly well with the theoretical results. For the range tested, the sensor is found to have a linear frequency variation with the liquid level Extended running in the laboratory shows that the system is very reliable. This system has been found insensitive to temperature variations of up to 15ðC.
Resumo:
The electrical resistance of the binary liquid system cyclohexane + acetic anhydride is measured, in the critical region, both in the pure mixture and when the mixture is doped with small amounts (≈ 100 ppm) of H2O/D2O impurities.T c was approached to aboutt=3×10−6 wheret=(T −T c )/T c . The critical exponentb ≈ 0.35 in the fit of the resistance data to the equationdR/dT ∼t −b does not seem to be affected appreciably by the impurities. There is a sign reversal ofdR/dt in the non-critical region. Binary liquid systems seem to violate the universality of the critical resistivity.
Resumo:
The electrical resistance of the critical binary liquid system C6H12+(CH3CO)2O is measured both in the pure form and when the system is doped with small amounts (≈ 100 ppm) of H2O impurities. Near Tc, the resistance varies as dR/dT = A1+A2 (T-Tc)-b with b ≈ 0.35. Neither the critical exponent b nor the amplitude ratio A1/A2 are affected by the impurities. A sign reversal of dR/dT is noticed at high temperatures T much greater-than Tc.
Resumo:
Vapor-liquid equilibrium data have been measured for the binary systems methyl ethyl ketone-p-xylene and chlorobenzene-p-xylene, at 685 mmHg pressure. The activity coefficients have been evaluated taking Into consideration the vapor-phase nonideallty. The f-x-y data have been subjected to a thermodynamic consistency test and the activity coefficients have been correlated by the Wilson equation.
Resumo:
The pressure dependence of critical parameters xc, Tc, and β have been analysed in four systems namely cyclohexane + acetic anhydride, n-heptane + acetic anhydride, methanol + n-heptane, and carbon disulphide + acetonitrile. The separation temperature was found to increase linearly with pressure the value of dTc/dP being 28 mK, 11 mK, 22 mK, and 25 mK respectively. These are in fair agreement with earlier measurements available for two systems. For the methanol + n-heptane system dTc/dP is apparently not consistent with the value predicted from the specific heat and thermal expansion data.Die Druckabhängigkeit der kritischen Parameter xc, Tc und β ist in den vier Systemen Cyclohexan + Essigsäureanhydrid, n-Heptan + Essigsäureanhydrid, Methanol + n-Heptan und Schwefelkohlenstoff + Acetonitril analysiert worden. Es wurde gefunden, daß die kritische Temperatur linear mit dem Druck ansteigt. Die Werte für dTc/dP betragen 28 mK, 11 mK, 22 mK und 25 mK. Sie sind in guter überein-stimmung mit früheren Messungen an zweien dieser Systeme. Für Methanol + n-Heptan stimmt der Wert für dT/dP offensichtlich nicht mit Werten, die mit Hilfe von Daten für die spezifische Wärme und die thermische Ausdehnung vorhergesagt wurden, überein.
Resumo:
The basic principles of operation of gas sensors based on solid-state galvanic cells are described. The polarisation of the electrodes can be minimised by the use of point electrodes made of the solid electrolyte, the use of a reference system with chemical potential close to that of the sample system and the use of graded condensed phase reference electrodes. Factors affecting the speed of response of galvanic sensors in equilibrium and non-equilibrium gas mixtures are considered with reference to products of combustion of fossil fuels. An expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for non-isothermal galvanic sensors are briefly outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. Sensors for oxygen, carbon, and alloying elements (Zn and Si) in liquid metals and alloys are discussed. The use of auxiliary electrodes permits the detection of chemical species in the gas phase which are not mobile in the solid electrolyte. Finally, the cause of common errors in galvanic measurements, and tests for correct functioning of galvanic sensors are given. 60 ref.--AA
Resumo:
Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.