228 resultados para Adaptive Image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing approches to digital halftoning of image are based primarily on thresholding. We propose a general framework fot image halftoning whcrc some function uf the output halftone tracks another function of the input gray-tone.This appcoach is shown lo unify most existing algorithms and to provide useful insights. Further, the new intcrpretation allows us to remedy problems in existing aigorithrms such as the error dlffusion, and sohsequently to achieve halftones haavmg superior quality. The proposed method is very general nature is an advantage since it offers a wide choice of three Cilters and a update rule. An intercstmg product of this framework is that equally good, or better, half-tones are possible ro be obtained by thresholding a noise proccess instead of the image itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exascale systems of the future are predicted to have mean time between failures (MTBF) of less than one hour. Malleable applications, where the number of processors on which the applications execute can be changed during executions, can make use of their malleability to better tolerate high failure rates. We present AdFT, an adaptive fault tolerance framework for long running malleable applications to maximize application performance in the presence of failures. AdFT framework includes cost models for evaluating the benefits of various fault tolerance actions including checkpointing, live-migration and rescheduling, and runtime decisions for dynamically selecting the fault tolerance actions at different points of application execution to maximize performance. Simulations with real and synthetic failure traces show that our approach outperforms existing fault tolerance mechanisms for malleable applications yielding up to 23% improvement in application performance, and is effective even for petascale systems and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time image reconstruction is essential for improving the temporal resolution of fluorescence microscopy. A number of unavoidable processes such as, optical aberration, noise and scattering degrade image quality, thereby making image reconstruction an ill-posed problem. Maximum likelihood is an attractive technique for data reconstruction especially when the problem is ill-posed. Iterative nature of the maximum likelihood technique eludes real-time imaging. Here we propose and demonstrate a compute unified device architecture (CUDA) based fast computing engine for real-time 3D fluorescence imaging. A maximum performance boost of 210x is reported. Easy availability of powerful computing engines is a boon and may accelerate to realize real-time 3D fluorescence imaging. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4754604]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach that can more effectively use the structural information provided by the traditional imaging modalities in multimodal diffuse optical tomographic imaging is introduced. This approach is based on a prior image-constrained-l(1) minimization scheme and has been motivated by the recent progress in the sparse image reconstruction techniques. It is shown that the proposed framework is more effective in terms of localizing the tumor region and recovering the optical property values both in numerical and gelatin phantom cases compared to the traditional methods that use structural information. (C) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l(2)-norm-based regularization, which is known to remove the high-frequency components in the reconstructed images and make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This new framework with the combination of l(1)-norm based regularization can provide better robustness to noise and provide better contrast recovery compared to conventional l(2)-based techniques. Moreover, it is shown that the proposed l(1)-based technique is computationally efficient compared to its counterpart (l(2)-based one). The proposed framework requires a reasonably close estimate of the actual solution for the initial frame, and any suboptimal estimate leads to erroneous reconstruction results for the subsequent frames.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image-guided diffuse optical tomography has the advantage of reducing the total number of optical parameters being reconstructed to the number of distinct tissue types identified by the traditional imaging modality, converting the optical image-reconstruction problem from underdetermined in nature to overdetermined. In such cases, the minimum required measurements might be far less compared to those of the traditional diffuse optical imaging. An approach to choose these optimally based on a data-resolution matrix is proposed, and it is shown that such a choice does not compromise the reconstruction performance. (C) 2013 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low complexity, essentially-ML decoding technique for the Golden code and the three antenna Perfect code was introduced by Sirianunpiboon, Howard and Calderbank. Though no theoretical analysis of the decoder was given, the simulations showed that this decoding technique has almost maximum-likelihood (ML) performance. Inspired by this technique, in this paper we introduce two new low complexity decoders for Space-Time Block Codes (STBCs)-the Adaptive Conditional Zero-Forcing (ACZF) decoder and the ACZF decoder with successive interference cancellation (ACZF-SIC), which include as a special case the decoding technique of Sirianunpiboon et al. We show that both ACZF and ACZF-SIC decoders are capable of achieving full-diversity, and we give a set of sufficient conditions for an STBC to give full-diversity with these decoders. We then show that the Golden code, the three and four antenna Perfect codes, the three antenna Threaded Algebraic Space-Time code and the four antenna rate 2 code of Srinath and Rajan are all full-diversity ACZF/ACZF-SIC decodable with complexity strictly less than that of their ML decoders. Simulations show that the proposed decoding method performs identical to ML decoding for all these five codes. These STBCs along with the proposed decoding algorithm have the least decoding complexity and best error performance among all known codes for transmit antennas. We further provide a lower bound on the complexity of full-diversity ACZF/ACZF-SIC decoding. All the five codes listed above achieve this lower bound and hence are optimal in terms of minimizing the ACZF/ACZF-SIC decoding complexity. Both ACZF and ACZF-SIC decoders are amenable to sphere decoding implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Service systems are labor intensive. Further, the workload tends to vary greatly with time. Adapting the staffing levels to the workloads in such systems is nontrivial due to a large number of parameters and operational variations, but crucial for business objectives such as minimal labor inventory. One of the central challenges is to optimize the staffing while maintaining system steady-state and compliance to aggregate SLA constraints. We formulate this problem as a parametrized constrained Markov process and propose a novel stochastic optimization algorithm for solving it. Our algorithm is a multi-timescale stochastic approximation scheme that incorporates a SPSA based algorithm for ‘primal descent' and couples it with a ‘dual ascent' scheme for the Lagrange multipliers. We validate this optimization scheme on five real-life service systems and compare it with a state-of-the-art optimization tool-kit OptQuest. Being two orders of magnitude faster than OptQuest, our scheme is particularly suitable for adaptive labor staffing. Also, we observe that it guarantees convergence and finds better solutions than OptQuest in many cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in technology have increased the number of cores and size of caches present on chip multicore platforms(CMPs). As a result, leakage power consumption of on-chip caches has already become a major power consuming component of the memory subsystem. We propose to reduce leakage power consumption in static nonuniform cache architecture(SNUCA) on a tiled CMP by dynamically varying the number of cache slices used and switching off unused cache slices. A cache slice in a tile includes all cache banks present in that tile. Switched-off cache slices are remapped considering the communication costs to reduce cache usage with minimal impact on execution time. This saves leakage power consumption in switched-off L2 cache slices. On an average, there map policy achieves 41% and 49% higher EDP savings compared to static and dynamic NUCA (DNUCA) cache policies on a scalable tiled CMP, respectively.