335 resultados para AQUEOUS NABR SOLUTIONS
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
Hydrazinium metal chlorides, (N2H5)2MCl4·2H2O (where M = Fe, Co, Ni and Cu), have been prepared from the aqueous solutions of the respective metal chlorides and hydrazine hydrochloride (N2H4·HCl or N2H4·2HCl) and investigated by spectral and thermal analyses. The crystal structure of the iron complex has been determined by direct methods and refined by full-matrix least-squares to an R of 0.023 and Rw of 0.031 for 1495 independent reflections. The structure shows ferrous ion in an octahedral environment bonded by two hydrazinium cations, two chloride anions and two water molecules. In the complex cation [Fe(N2H5)2(H2O)2Cl2]2+, the coordinated groups are in trans positions.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.
Resumo:
The potential to remove chromium(VI) from aqueous solutions through biosorption using coffee husk was investigated. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(VI) were studied. The data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity was found to be 44.95 mg/g. The Freundlich constants K-f and n were 1.027 mg/g (litre/mg)(n)] and 1.493, respectively. Desorption studies indicated the removal of 60% of the hexavalent chromium. Infrared spectral studies revealed the presence of functional groups, such as hydroxyl and carboxyl groups, on the surface of the biomass, which facilitates biosorption of Cr(VI).
Resumo:
Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.
Resumo:
The crystal and molecular structures of the Tris salt of adenosine 5'-diphosphate were determined from X-ray diffraction data. The crystals are monoclinic, space P21, and Z = 2 with a=9.198 (2) A, b=6.894 (1) A, c=18.440 (4) A, and beta = 92.55 (2) degrees. Intensity data were collected on an automated diffractometer. The structure was solved by the heavy-atom technique and refined by least squares to R = 0.047. The ADP molecule adopts a folded conformation. The conformation about the glycosidic bond is anti. The conformation of the ribose ring is close to a perfect C(2')-endo-C-(3')-exo puckering. The conformation about C(4')-C(5') is gauche-gauche, similar to other nucleotide structures. The pyrophosphate chain displays a nearly eclipsed geometry when viewed down the P-P vector, unlike the staggered conformation observed in crystal structures of other pyrophosphates. The less favorable eclipsed conformation probably results from the observed association of Tris molecules with the polar diphosphate chain through electrostatic interactions and hydrogen bonds. Such interactions may play an important role in Tris-buffered aqueous solutions of nucleotides and metal ions.
Resumo:
Analytical and numerical solutions of a general problem related to the radially symmetric inward spherical solidification of a superheated melt have been studied in this paper. In the radiation-convection type boundary conditions, the heat transfer coefficient has been taken as time dependent which could be infinite, at time,t=0. This is necessary, for the initiation of instantaneous solidification of superheated melt, over its surface. The analytical solution consists of employing suitable fictitious initial temperatures and fictitious extensions of the original region occupied by the melt. The numerical solution consists of finite difference scheme in which the grid points move with the freezing front. The numerical scheme can handle with ease the density changes in the solid and liquid states and the shrinkage or expansions of volumes due to density changes. In the numerical results, obtained for the moving boundary and temperatures, the effects of several parameters such as latent heat, Boltzmann constant, density ratios, heat transfer coefficients, etc. have been shown. The correctness of numerical results has also been checked by satisfying the integral heat balance at every timestep.
Resumo:
Fine-particle metal chromites (MCr2O4, where M = Mg, Ca, Mn, Fe, Co, Ni, Cu, and Zn) have been prepared by the combustion of aqueous solutions containing the respective metal nitrate, chromium(III) nitrate, and urea in stoichiometric amounts. The mixtures, when rapidly heated to 350°C, ignite and yield voluminous chromites with surface areas ranging from 5 to 25 m2/g. MgCr2O4, sintered in air at 1500°C for 5 h, has a density of 4.0 g/cm3.
Resumo:
Exact travelling wave solutions for hydromagnetic waves in an exponentially stratified incompressible medium are obtained. With the help of two integrals it becomes possible to reduce the system of seven nonlinear PDE's to a second order nonlinear ODE which describes an one dimensional harmonic oscillator with a nonlinear friction term. This equation is studied in detail in the phase plane. The travelling waves are periodic only when they propagate either horizontally or vertically. The reduced second order nonlinear differential equation describing the travelling waves in inhomogeneous conducting media has rather ubiquitous nature in that it also appears in other geophysical systems such as internal waves, Rossby waves and topographic Rossby waves in the ocean.
Resumo:
Fine-particle rare-earth-metal zirconates, Ln2Zr2O7, where Ln = La, Ce, Pr, Nd, Sm, Gd and Dy having the pyrochlore structure have been prepared using a novel combustion process. The process employs aqueous solutions of the corresponding rare-earth-metal nitrate, zirconium nitrate and carbohydrazide/urea in the required molar ratio. When the solution is rapidly heated to 350–500 °C it boils, foams and burns autocatalytically to yield voluminous oxides. The formation of single-phase Ln2Zr2O7 has been confirmed by powder X-ray diffraction, infrared and fluorescence spectroscopy. The solid combustion products are fine, having surface areas in the range 6–20 m2 g–1. The cold-pressed Pr2Zr2O7 compact when sintered at 1500 °C, 4 h in air, achieved 99% theoretical density.
Resumo:
The thermodynamics of monodisperse solutions of polymers in the neighborhood of the phase separation temperature is studied by means of Wilson’s recursion relation approach, starting from an effective ϕ4 Hamiltonian derived from a continuum model of a many‐chain system in poor solvents. Details of the chain statistics are contained in the coefficients of the field variables ϕ, so that the parameter space of the Hamiltonian includes the temperature, coupling constant, molecular weight, and excluded volume interaction. The recursion relations are solved under a series of simplifying assumptions, providing the scaling forms of the relevant parameters, which are then used to determine the scaling form of the free energy. The free energy, in turn, is used to calculate the other singular thermodynamic properties of the solution. These are characteristically power laws in the reduced temperature and molecular weight, with the temperature exponents being the same as those of the 3d Ising model. The molecular weight exponents are unique to polymer solutions, and the calculated values compare well with the available experimental data.
Resumo:
The objective of the study was to investigate the effects of the nature of solvent and polymer concentration on the mass-transfer coefficients in desorption of solvents and to develop a correlation to predict them. Desorption was experimentally studied in a Lewis cell with concentrated binary solutions of polymer in good and poor solvents. The range of parameters covered are polymer weight fraction between 0.25 and 0.6, Reynolds number between 3 and 100; Schmidt number between 1.4 X lo6 and 2.5 X lo8, and Sherwood number between 3.5 X lo2 and 1.2 X lo4. Desorption from moderately concentrated solutions (polymer weight fraction -0.25) is gas-phase controlled. Studies with more concentrated solutions showed that the effects of solvent and concentration were such that corrections due to concentration-dependent diffusivity and viscosity as well as high flux had to be applied to the mass-transfer coefficients before they could be correlated.