208 resultados para urea peroxide
Resumo:
After ensilation, the toxic Compositae weed Parthenium hysterophorus was devoid of the toxic principle parthenin. Laboratory-scale ensilation indicated that no parthenin was detectable after 5 wk of anaerobic fermentation. For animal feeding studies, silage was made on a large scale from Parthenium mixed with maize or from Parthenium alone. Crossbred bull and buffalo bull calves were fed diets containing the silages, or control diet without silage, for 12 wk. The animals consumed both silages with relish, and body weight gains of silage-fed calves did not differ from those of the controls. The digestibilities of dry matter, fibre and nitrogen-free extract were greater with the control diet, but the biological value of proteins tended to be greater with the silage-containing diets. Haematological studies indicated no significant differences between experimental and control groups in selected parameters, except for a reduction in blood urea nitrogen in the animals fed silage. The possible causes for these biochemical alterations are discussed. Since the nutritive value of Parthenium silage compares favourably with the standard diet, and Parthenium seeds collected from the silage did not germinate, we suggest that ensilation can be used as an additional method in the containment and eradication of these plants, which grow wild in India.
Resumo:
This paper reports the first study of the microstructure of a copolyperoxide by nuclear magnetic resonance spectroscopy. The copolyperoxides of styrene and methyl methacrylate (MMA) of various compositions have been synthesized. An analysis of the resonance signal of the backbone methylene protons gave the diad sequence probabilities which led to the calculation of the oxidative copolymerization reactivity ratios for styrene and MMA and the microstructural parameters like average chain length of the repeat unit sequences, run number, etc. The results point to the tendency of the SO1 and MO:! units to alternate in the chain. Compared to poly(styrene peroxide), the aromatic C1 seems to be stereosensitive in the terpolymers.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
Reaction of the bicyclic phosphazane N5P4Et5Cl2 with 2,6-dimethylphenol and subsequent oxidation of the product by aqueous hydrogen peroxide yields N5P4Et5O4(OC6H3Me2-2,6)2 in 85% yield. Its structure has been established by NMR spectroscopy and single-crystal X-ray diffraction. The compound crystallises in the monoclinic space group C2/c with a= 21.245(5), b= 10.879(2), c= 16.450(6)Å, ?= 123.94(2)°, Z= 4, R= 0.066. The structural features are compared with those of bicyclic ?5-phosphazenes of type N5P4R3(NR1R2)5(NHR3)(R1,R3= Me or Et, R2= H or Me). The observed conformation of the N3P3 rings in the present compound is mainly dictated by the maximisation of the stabilising influence of �negative hyperconjugative interactions� between the nitrogen lone pairs and the adjacent P�X ?* orbitals.
Resumo:
Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.
Resumo:
Ferrocenyl conjugates 2-ferrocenylimidazophenanthroline (1) and 2-ferrocenylimidazophenanthrene (2) were prepared, characterized, and their photoinduced DNA cleavage and photocytotoxic activity were studied. 2-Phenylimidazophenanthroline (3) was used as a control species. Compound 2 was characterized by X-ray crystallography. The interaction of the compounds with double-stranded calf thymus DNA (CT DNA) was studied. The compounds show good binding affinity to CT DNA with K-b values of approximately 10(5) M-1. Thermal denaturation data suggest the groove binding nature of the compounds. The redox-active compounds show poor chemical nuclease activity in the presence of hydrogen peroxide and glutathione (GSH). Compound 1 exhibits significant DNA photocleavage activity in visible light of 476 and 532 nm. Compound 3 shows only moderate DNA cleavage activity. The positive effect of the ferrocenyl moiety is demonstrated by the DNA photocleavage data. Mechanistic investigations reveal the formation of superoxide as well as hydroxyl radicals as the active species. The photocytotoxicity of the compounds in HeLa cells was studied upon irradiation with visible light (400-700 nm). Compound 1 shows efficient photocytotoxic activity with an IC50 value of 13 mu M, while compounds 2 and 3 are less active with IC50 values of > 50 and 22 mu M, respectively.
Resumo:
Fast protein liquid chromatography (FPLC) system using Mono Q (HR 5/5) anion-exchange column chromatography followed by highly cross-linked urea-polyacrylamide gel electrophoresis (urea-PAGE) was used for the purification of lysine-specific tRNA (tRNA(Lys)) from rat liver. Crude tRNA from rat liver was fractionated with a linear gradient of NaCl (0.3-0.8 M) in triethanolamine-HCl buffer, pH 4.5, and the activity of tRNA(Lys) was found to elute between 0.51 and 0.57 M NaCl. Using this concentration range of NaCl, tRNA(Lys) was refractionated on the same column with a shallow gradient, where a single peak of tRNA(Lys) activity was obtained. tRNA(Lys)-rich fractions recovered from the second run were electrophoretically separated on 16% polyacrylamide-7 M urea gel into one major band and three minor bands. The major band showed a specific activity of 997 pmols/A260 U for tRNALys with a 43-fold purification and approximately 17% recovery. The minor bands displayed negligible or no activity for lysine. tRNA(Lys) obtained by this method was found to be homogeneous by competitive aminoacylation. The advantages of FPLC followed by urea-PAGE in the purification of an amino acid-specific tRNA over conventional column chromatography are discussed.
Resumo:
Tialite, beta-Al2TiO5, a low expansion material, has been synthesised by the combustion of corresponding metal nitrates and carbohydrazide (CH) or urea redox mixtures at 500-degrees-C. As prepared powders contained tialite, rutile, and corundum in the mole ratios of 50:25:25 (CH) and 20:40:40 (urea). The combustion derived powders, when calcined 30 min at 1300-degrees-C, gave single phase beta-tialite having a surface area of 20-25 m2 g-1 and a particle size of 0.79-1.03 mum.
Resumo:
Unusually long (>14 cm) crystalline needles grow from 4-(3-bromopropyloxy)salicylaldehyde 1 presumably as a consequence of Br ... Br interactions; the powdered form of 1 shows one order of magnitude greater SHG activity realtive to urea.
Resumo:
This paper reports a study on the microstructure of two series of copolyperoxides of alpha-methylstyrene, with styrene and with methylmethacrylate. The copolyperoxides were synthesized by the free radical-initiated oxidative copolymerization of the vinyl monomer pairs. The copolyperoxide compositions obtained from the H-1 and C-13 NMR spectra led to the determination of the reactivity ratios. The product of the reactivity ratios indicates that alpha-methylstyrene forms a block copolyperoxide with styrene and a random copolyperoxide with methylmethacrylate. Microstructural parameters like average sequence length, run number, etc. have been determined for the latter copolyperoxide from analysis of its C-13 NMR spectrum. The aromatic quaternary and carbonyl carbons were found to be sensitive to triad sequences. The end groups of the copolyperoxides have been identified by H-1 NMR as well as FTIR spectroscopic techniques. The thermal degradation of the copolyperoxides has been studied by differential scanning calorimetry, which confirms the alternating peroxide units in the copolyperoxide chain.
Resumo:
Mullite-zirconia composite powders were prepared by the combustion of an aqueous heterogeneous redox mixture consisting of Al(NO3)(3), Zr(NO3)(4)/ZrO(NO3)(2), silica fume and urea/diformyl hydrazine at 500 degrees C. X-ray diffraction data showed that a large amount of tetragonal zirconia existed in the composite powders in spite of high temperature calcination. Milled composite powders showed enhanced densification compared to the unmilled powders and the microstructure of the sintered (1600 degrees C) compacts showed the presence of spherical zirconia grains in intergranular positions along with elongated mullite grains.
Resumo:
This article describes the first comprehensive study on the use of a vinyl polyperoxide, namely poly(styrene peroxide) (PSP), an equimolar alternating copolymer of oxygen and styrene, as a photoinitiator for free radical polymerization of vinyl monomers like styrene. The molecular weight, yield, structure and thermal stability of polystyrene (PS) thus obtained are compared with PS made using a simple peroxide like di-t-butyl peroxide. Interestingly, the PS prepared using PSP contained PSP segments attached to its backbone preferably at the chain ends. This PSP-PS-PSP was further used as a thermal macroinitiator for the preparation of another block copolymer PS-b-PMMA by reacting PSP-PS-PSP with methyl methacrylate (MMA). The mechanism of block copolymerization has been discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.
Resumo:
A series of di- and tripeptide-based ebselen analogues has been synthesized. The compounds were characterized by H-1, C-13, and Se-77 NMR spectroscopy and mass spectral techniques. The glutathione peroxidase (GPx)-like antioxidant activity has been studied by using H2O2, tert-butyl hydroperoxide (tBuOOH), and cumene hydroperoxide (Cum-OOH) as substrates, and glutathione (GSH) as a co-substrate. Although all the peptide-based compounds have a selenazole ring similar to that of ebselen, the GPx activity of these compounds highly depends on the nature of the peptide moiety attached to the nitrogen atom of the selenazole ring. It was observed that the introduction of a phenylalanine (Phe) amino acid residue in the N-terminal reduces the activity in all three peroxide systems. On the other hand, the introduction of aliphatic amino acid residues such as valine (Val) significantly enhances the GPx activity of the ebselen analogues. The difference in the catalytic activity of dipeptide-based ebselen derivatives can be ascribed mainly to the change in the reactivity of these compounds toward GSH and peroxide. Although the presence of the Val-Ala-CO2Me moiety facilitates the formation of a catalytically active selenol species, the reaction of ebselen analogues that has a Phe-Ile-CO2Me residue with GSH does not generate the corresponding selenol. To understand the antioxidant activity of the peptide-based ebselen analogues in the absence of GSH, these compounds were studied for their ability to inhibit peroxynitrite (PN)-mediated nitration of bovine serum albumin (BSA) and oxidation of dihydrorhodamine 123. In contrast to the GPx activity, the PN-scavenging activity of the Phe-based peptide analogues was found to be comparable to that of the Val-based compounds. However, the introduction of an additional Phe residue to the ebselen analogue that had a Val-Ala dipeptide significantly reduced the potency of the parent compound in PN-mediated nitration.
Resumo:
Red, blue and green emitting lamp phosphors such as EU(3+) doped Y2O3 (red phosphor), EU(2+) doped Ba0.64Al12O18.64, BaMgAl10O17 and BaMg2Al16O27 (blue phosphors) and Ce0.67Tb0.33MgAl11O19 and Eu2+, Mn2+ doped BaMgAl10O17 (green phosphors) have been prepared by the combustion of the corresponding metal nitrates (oxidizer) and oxalyl dihydrazide/urea/carbohydrazide (fuel) mixtures at 400 degrees-500 degrees C within 5 min. The formation of these phosphors has been confirmed by their characteristic powder X-ray diffraction patterns and fluorescence spectra. The phosphors showed characteristic emission bands at 611 nm (red emission), 430-450 nm (blue emission) and 515-540 nm (green emission). The fine-particle nature of the combustion derived phosphors has been investigated using powder density, particle size and BET surface area measurements.