218 resultados para spatially varying object pixel density
Resumo:
The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice.
Resumo:
The modularity of the supramolecular synthon is used to obtain transferability of charge density derived multipolar parameters for structural fragments, thus creating an opportunity to derive charge density maps for new compounds. On the basis of high resolution X-ray diffraction data obtained at 100 K for three compounds methoxybenzoic acid, acetanilide, and 4-methyl-benzoic acid, multipole parameters for O-H center dot center dot center dot O carboxylic acid dimer and N-H center dot center dot center dot O amide infinite chain synthon fragments have been derived. The robustness associated with these supramolecular synthons has been used to model charge density derived multipolar parameters for 4-(acetylamino)benzoic acid and 4-methylacetanilide. The study provides pointers to the design and fabrication of a synthon library of high resolution X-ray diffraction data sets. It has been demonstrated that the derived charge density features can be exploited in both intra- and intermolecular space for any organic compound based on transferability of multipole parameters. The supramolecular synthon based fragments approach (SBFA) has been compared with experimental charge density data to check the reliability of use of this methodology for transferring charge density derived multipole parameters.
Resumo:
We demonstrate that the structural and optical properties of a sol-gel deposited zinc oxide thin film can be tuned by varying the composition of the sol, consisting of ethylene glycol and glycerol. A systematic study of the effect of the composition of sol on the mean grain size, thickness, and defect density of the zinc oxide film is presented. About 20% glycerol content in the sol is observed to improve the quality of the film, as evaluated by X-ray diffraction and photoluminescence studies. Thus, optimizing the composition of the sol for about 60 nm thick ZnO film using 20% glycerol resulted in the zinc oxide film that is about 80% transparent in visible spectrum, exhibiting electrical resistivity of about 18 Omega cm and field-effect mobility of 0.78 cm(2)/(V s). (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3515894] All rights reserved.
Resumo:
Polyelectrolyte complex formation involving carboxymethylcellulose and quaternized poly(vinylpyridine) as the polyions has been studied using viscosity and u.v. spectroscopic methods. The influence of charge density and molecular weight of two polycations on the composition of the complex has been investigated at two different concentrations. The charge density of the polycation is found to have different influences on the composition at different concentrations. The molecular weight of the polycation and the location of the ionic site on the polycation do not show any effect on the composition. A drastic increase in the viscosity of the polyion mixture containing quaternized poly(2-vinylpyridine) in the non-stoichiometric ratio shows evidence for the existence of the soluble polyelectrolyte complex. The results are analysed on the basis of the relative extension of the polyelectrolyte chains.
Resumo:
A mean-field description of the glass transition in the hard-sphere system is obtained by numerically locating "glassy" minima of a model free-energy functional. These minima, characterized by inhomogeneous but aperiodic density distributions, appear as the average density is increased above the value at which equilibrium crystallization takes place. Investigations of the density distribution and local bond-orientational order at these minima yield results similar to those obtained from simulations.
Resumo:
Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.
Resumo:
A new approach based on variable density in conjunction with shallow shell theory is proposed to analyse rotating shallow shell of variable thickness. Coupled non-linear ordinary differential equations governing shallows shells of variable thickness are first derived before applying the variable density approach. Results obtained from the new approach compare well with FEM calculation for a wide range of profiles considered in this paper.
Resumo:
Experimental charge density distribution in 2-chloro-4-fluorobenzoic acid and 4-fluorobenzamide has been carried out using high resolution X-ray diffraction data collected at 100 K using Hansen-Coppens multipolar formalism of electron density. These compounds display short Cl center dot center dot center dot F and F center dot center dot center dot F interactions, respectively. The experimental results are compared with the theoretical charge densities using theoretical structure factors obtained from periodic quantum calculation at the B3LYP/6-31G** level. The topological features were derived from Bader's ``atoms in molecules'' (AIM) approach. Intermolecular Cl center dot center dot center dot F interaction in 2-chloro-4-fluorobenzoic acid is attractive in nature (type II interaction) while the nature of F center dot center dot center dot F interactions in 4-fluorobenzamide shows indication of a minor decrease in repulsion (type I interaction), though the extent of polarization on the fluorine atom is arguably small.
Resumo:
This paper(1) presents novel algorithms and applications for a particular class of mixed-norm regularization based Multiple Kernel Learning (MKL) formulations. The formulations assume that the given kernels are grouped and employ l(1) norm regularization for promoting sparsity within RKHS norms of each group and l(s), s >= 2 norm regularization for promoting non-sparse combinations across groups. Various sparsity levels in combining the kernels can be achieved by varying the grouping of kernels-hence we name the formulations as Variable Sparsity Kernel Learning (VSKL) formulations. While previous attempts have a non-convex formulation, here we present a convex formulation which admits efficient Mirror-Descent (MD) based solving techniques. The proposed MD based algorithm optimizes over product of simplices and has a computational complexity of O (m(2)n(tot) log n(max)/epsilon(2)) where m is no. training data points, n(max), n(tot) are the maximum no. kernels in any group, total no. kernels respectively and epsilon is the error in approximating the objective. A detailed proof of convergence of the algorithm is also presented. Experimental results show that the VSKL formulations are well-suited for multi-modal learning tasks like object categorization. Results also show that the MD based algorithm outperforms state-of-the-art MKL solvers in terms of computational efficiency.
Resumo:
A sample of 96 compact flat-spectrum extragalactic sources, spread evenly over all galactic latitudes, has been studied at 327 MHz for variability over a time interval of about 15 yr. The variability shows a dependence on galactic latitude being less both at low and high latitudes and peaking around absolute value of b approximately 15-degrees. The latitude dependence is surprisingly similar in both the galactic centre and anticentre directions. Assuming various single and multi-component distributions for the ionized, irregular interstellar plasma, we have tried to generate the observed dependence using a semi-qualitative treatment of refractive interstellar scintillations. We find that it is difficult to fit our data with any single or double component cylindrical distribution. Our data suggests that the observed variability could be influenced by the spiral structure of our Galaxy.
Resumo:
Hyperbranched polyurethanes, with varying oligoethyleneoxy spacer segments between the branching points, have been synthesized by a one-pot approach starting from the appropriately designed carbonyl azide that incorporates the different spacer segments. The structures of monomers and polymers were confirmed by IR and H-1-NMR spectroscopy. The solution viscosity of the polymers suggested that they were of reasonably high molecular weight. Reversal of terminal functional groups was achieved by preparing the appropriate monohydroxy dicarbonyl azide monomer. The large number of terminal isocyanate groups at the chain ends of such hyperbranched macromolecules caused them to crosslink prior to its isolation. However, carrying out the polymerization in the presence of 1 equiv of a capping agent, such as an alcohol, resulted in soluble polymers with carbamate chain ends. Using a biphenyl-containing alcohol as a capping agent, we have also prepared novel hyperbranched perbranched polyurethanes with pendant mesogenic segments. These mesogen-containing polyurethanes, however, did not exhibit liquid crystallinity probably due to the wholly aromatic rigid polymer backbone. (C) 1996 John Wiley & Sons, Inc.
Resumo:
This article provides a detailed computational analysis of the reaction of dense nanofilms and the heat transfer characteristics on a composite substrate. Although traditional energetic compounds based on organic materials have similar energy per unit weight, non-organic material in nanofilm configuration offers much higher energy density and higher flame speed. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The numerical analysis of the thermal transport of the reacting film deposited on the substrate combined a hybrid approach in which a traditional two-dimensional black box theory was used in conjunction with the sandwich model to estimate the appropriate heat flux on the substrate accounting for the heat loss to the surroundings. A procedure to estimate this heat flux using stoichiometric calculations is provided. This work highlights two important findings. One is that there is very little difference in the temperature profiles between a single substrate of silica and a composite substrate of silicon silica. Secondly, with increase in substrate thickness, the quenching effect is progressively diminished at a given speed. These findings show that the composite substrate is effective and that the average speed and quenching of flames depend on the thickness of the silica substrate, and can be controlled by a careful choice of the substrate configuration. (C) 2011 Elsevier Ltd. All rights reserved.