257 resultados para soil strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A discussion of a technical note with the aforementioned title by Day and Marsh, published in this journal (Volume 121, Number 7, July 1995), is presented. Discussers Robinson and Allam assert that the authors' application of the pore-pressure parameter A to predict and quantify swell or collapse of compacted soils is hard to use because the authors visualize the collapse-swell phenomenon to occur in compacted soils broadly classified as sands and clays. The literature demonstrates that mineralogy has an important role in the volume change behavior of fine-grained soils. Robinson and Allam state that the A-value measurements may not completely predict the type of volume change anticipated in compacted soils on soaking without soil clay mineralogy details. Discussion is followed by closure from the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design, analysis and technology for the integrity enhancement of damaged or underdesigned structures continues to be an engineering challenge. Bonded composite patch repairs to metallic structures is receiving increased attention in the recent years. It offers various advantages over rivetted doubler, particularly for airframe repairs. This paper presents an experimental investigation of residual strength and fatigue crack-growth life of an edge-cracked aluminium specimen repaired using glass epoxy composite patch. The investigation begins with the evaluation of three different surface treatments from bond strength viewpoint. A simple thumb rule formula is employed to estimate the patch size. Cracked and repaired specimens are tested under static and fatigue loading. The patch appears to restore the original strength of the undamaged specimen and enhance the fatigue crack growth life by an order of magnitude. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure to design a constant thickness composite disc of uniform strength by radially tailoring the anisotropic elastic constants is proposed. A special case of an isotropic disc with radially varying modulus is also examined. Analytical results are also compared with FEM calculations for two cases of radially varying anisotropy and for an isotropic disc with variable modulus. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full-scale test embankments, with and without geotextile reinforcement, were constructed on soft Bangkok clay. The performances of these embankments are evaluated and compared with each other on the basis of field measurements and FEM analysis. The analyses of failure mechanisms and the investigations on the embankment stability using undrained conditions were also done to determine the critical embankment height and the corresponding geotextile strain. The high-strength geotextile can reduce the plastic deformation in the underlying foundation soil, increase the collapse height of the embankment on soft ground, and produce a two-step failure mechanism. In this case study, the critical strain in the geotextile corresponding to the primary failure of foundation soils may be taken as 2.5-3% irrespective of the geotextile reinforcement stiffness. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an assessment of the flexural behavior of 15 fully/partially prestressed high strength concrete beams containing steel fibers investigated using three-dimensional nonlinear finite elemental analysis. The experimental results consisted of eight fully and seven partially prestressed beams, which were designed to be flexure dominant in the absence of fibers. The main parameters varied in the tests were: the levels of prestressing force (i.e, in partially prestressed beams 50% of the prestress was reduced with the introduction of two high strength deformed bars instead), fiber volume fractions (0%, 0.5%, 1.0% and 1.5%), fiber location (full depth and partial depth over full length and half the depth over the shear span only). A three-dimensional nonlinear finite element analysis was conducted using ANSYS 5.5 [Theory Reference Manual. In: Kohnke P, editor. Elements Reference Manual. 8th ed. September 1998] general purpose finite element software to study the flexural behavior of both fully and partially prestressed fiber reinforced concrete beams. Influence of fibers on the concrete failure surface and stress-strain response of high strength concrete and the nonlinear stress-strain curves of prestressing wire and deformed bar were considered in the present analysis. In the finite element model. tension stiffening and bond slip between concrete and reinforcement (fibers., prestressing wire, and conventional reinforcing steel bar) have also been considered explicitly. The fraction of the entire volume of the fiber present along the longitudinal axis of the prestressed beams alone has been modeled explicitly as it is expected that these fibers would contribute to the mobilization of forces required to sustain the applied loads across the crack interfaces through their bridging action. A comparison of results from both tests and analysis on all 15 specimens confirm that, inclusion of fibers over a partial depth in the tensile side of the prestressed flexural structural members was economical and led to considerable cost saving without sacrificing on the desired performance. However. beams having fibers over half the depth in only the shear span, did not show any increase in the ultimate load or deformational characteristics when compared to plain concrete beams. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An apparatus in the direct shear mode has been developed to conduct soil-soil and soil-solid material interface tests in the undrained condition. Evaluation of the apparatus showed that all the requirements for simulating the undrained condition of shear are satisfied. The interface test results show that the adhesion factor a increases with the surface roughness of the solid material. In the case of the normally consolidated state, alpha is practically independent of the undrained shear strength of the clay for a given surface. For the overconsolidated state, alpha depends on the undrained shear strength and the overconsolidation ratio for smooth surfaces but for rough surfaces; alpha is independent of both undrained shear strength and overconsolidation ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the results of an experimental and analytical comparison of the flexural behavior of a high-strength concrete specimen (no conventional reinforcement) with an average plain concrete cube strength of nearly 65 MPa and containing trough shape steel fibers. Trough shape steel fibers with a volume fraction ranging from 0 to 1.5% and having a constant aspect ratio of 80 have been used in this study. Increased toughness and a more ductile stress-strain response were observed with an increase in fiber content, when the fibers were distributed over the full/partial depth of the beam cross section. Based on the tests, a robust analytical procedure has been proposed to establish the required partial depth to contain fiber-reinforced concrete (FRC) so as to obtain the flexural capacity of a member with FRC over the full depth. It is expected that this procedure will help designers in properly estimating the required partial depth of fibers in composite sections for specific structural applications. Empirical and mechanistic relations have also been proposed in this study to establish the load-deflection behavior of high-strength FRC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compressive strength of epoxy with "free-inforcement" flyash without any prior separation is studied. It is observed that the increase in filler volume fraction beyond 10% brings about a reduction in the compressive strength. Increasing adhesion factor, determined relative to unfilled matrix, implied an alleviation in the interfacial adhesion due to dewetting, especially at the surfaces of larger particles and at higher filler concentrations. Such deductions were verified by examining the surface features of compression tested samples in Scanning Electron Microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation on the fracture properties of high-strength concrete (HSC) is reported. Three-point bend beam specimens of size 100 x 100 x 500 mm were used as per RILEM-FMC 50 recommendations. The influence of maximum size of coarse aggregate on fracture energy, fracture toughness, and characteristic length of concrete has been studied. The compressive strength of concrete ranged between 40 and 75 MPa. Relatively brittle fracture behavior was observed with the increase in compressive strength. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases as the size of coarse aggregate increases. The fracture energy increases as the maximum size of coarse aggregate and compressive strength of concrete increase. The characteristic length of concrete increases with the maximum size of coarse aggregate and decreases as the compressive strength increases, (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation on the bond strength of the interface between mortar and aggregate is reported. Composite compact specimens were used for applying Mode I and Mode 11 loading effects. The influence of the type of mortar and type of aggregate and its roughness on the bond strength of the interface has been studied. It has been observed that the bond strength of the interface in tension is significantly low, though the mortars exhibited higher strength. The highest tensile bond strength values have been observed with rough concrete surface with M-13 mortar. The bond strength of the interface in Mode I load depends on the type of aggregate surface and its roughness, and the type of mortar, The bond strength of the interface between mortar M-13 cast against rough concrete in direct tension seems to be about one third of the strength of the mortar. However, it is about 1/20th to 1/10th with the mortar M-12 in sandwiched composite specimens. The bond strength of the interface in shear (Mode IT) significantly increases as the roughness and the phase angle of the aggregate surface increase. The strength of mortar on the interface bond strength has been very significant. The sandwiched composite specimens show relatively low bond strength in Mode I loading. The behavior of the interface in both Mode I and Mode 11 loading effects has been brittle, indicating catastrophic failure. (C) 2002 Elsevier Science Ltd. All rights reserved.