144 resultados para pass-through effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal interface materials (TIMs) form a mechanical and thermal link between a heat source and a heat sink. Thus, they should have high thermal conductivity and high compliance to efficiently transfer heat and accommodate any differential strain between the heat source and the sink, respectively. This paper reports on the processing and the characterization of potential metallic TIM composite solders comprising of Cu, a high conductivity phase, uniformly embedded in In matrix, a highly compliant phase. We propose the fabrication of such a material by a two-step fabrication technique comprising of liquid phase sintering (LPS) followed by accumulative roll bonding (ARB). To demonstrate the efficacy of the employed two-step processing technique, an In-40 vol. % Cu composite solder was produced first using LPS with short sintering periods (30 or 60 s at 160 degrees C) followed by ARB up to five passes, each pass imposing a strain of 50%. Mechanical response and electrical and thermal conductivities of the fabricated samples were evaluated. It was observed that processing through ARB homogenizes the distribution of Cu in an In matrix, disintegrates the agglomerates of Cu powders, and also significantly increases thermal and electrical conductivities, almost attaining theoretically predicted values, without significantly increasing the flow stress. Furthermore, the processing technique also allows the insertion of desired foreign species, such as reduced graphene oxide, in In-Cu for further enhancing a target property, such as electrical conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to study the influence of inverter dead-time on steady as well as dynamic operation of an open-loop induction motor drive fed from a voltage source inverter (VSI). Towards this goal, this paper presents a systematic derivation of a dynamic model for an inverter-fed induction motor, incorporating the effect of inverter dead-time, in the synchronously revolving dq reference frame. Simulation results based on this dynamic model bring out the impact of inverter dead-time on both the transient response and steady-state operation of the motor drive. For the purpose of steady-state analysis, the dynamic model of the motor drive is used to derive a steady-state model, which is found to be non-linear. The steady-state model shows that the impact of dead-time can be seen as an additional resistance in the stator circuit, whose value depends on the stator current. Towards precise evaluation of this dead-time equivalent resistance, an analytical expression is proposed for the same in terms of inverter dead-time, switching frequency, modulation index and load impedance. The notion of dead-time equivalent resistance is shown to simplify the solution of the non-linear steady-state model. The analytically evaluated steady-state solutions are validated through numerical simulations and experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the effect of particle size of sand and the surface asperities of reinforcing material on their interlocking mechanism and its influence on the interfacial shear strength under direct sliding condition. Three sands of different sizes with similar morphological characteristics and four different types of reinforcing materials with different surface features were used in this study. Interface direct shear tests on these materials were performed in a specially developed symmetric loading interface direct shear test setup. Morphological characteristics of sand particles were determined from digital image analysis and the surface roughness of the reinforcing materials was measured using an analytical expression developed for this purpose. Interface direct shear tests at three different normal stresses were carried out by shearing the sand on the reinforcing material fixed to a smooth surface. Test results revealed that the peak interfacial friction and dilation angles are hugely dependent upon the interlocking between the sand particles and the asperities of reinforcing material, which in turn depends on the relative size of sand particles and asperities. Asperity ratio (AS/D-50) of interlocking materials, which is defined as the ratio of asperity spacing of the reinforcing material and the mean particle size of sand was found to govern the interfacial shear strength with highest interfacial strength measured when the asperity ratio was equal to one, which represents the closest fitting of sand particles into the asperities. It was also understood that the surface roughness of the reinforcing material influences the shear strength to an extent, the influence being more pronounced in coarser particles. Shear bands in the interface shear tests were analysed through image segmentation technique and it was observed that the ratio of shear band thickness (t) to the median particle size (D-50) was maximum when the AS/D-50 was equal to one. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first atomistic simulation of two stacked nucleosome core particles (NCPs), with an aim to understand, in molecular detail, how they interact, the effect of salt concentration, and how different histone tails contribute to their interaction, with a special emphasis on the H4 tail, known to have the largest stabilizing effect on the NCP-NCP interaction. We do not observe specific K16-mediated interaction between the H4 tail and the H2A-H2B acidic patch, in contrast with the findings from crystallographic studies, but find that the stacking was stable even in the absence of this interaction. We perform simulations with the H4 tail (partially/completely) removed and find that the region between LYS-16 and LYS-20 of the H4 tail holds special importance in mediating the inter-NCP interaction. Performing similar tail-clipped simulations with the H3 tail removed, we compare the roles of the H3 and H4 tails in maintaining the stacking. We discuss the relevance of our simulation results to the bilayer and other liquid-crystalline phases exhibited by NCPs in vitro and, through an analysis of the histone-histone interface, identify the interactions that could possibly stabilize the inter-NCP interaction in these columnar mesophases. Through the mechanical disruption of the stacked nucleosome system using steered molecular dynamics, we quantify the strength of inter-NCP stacking in the presence and absence of salt. We disrupt the stacking at some specific sites of internucleosomal tail-DNA contact and perform a comparative quantification of the binding strengths of various tails in stabilizing the stacking. We also examine how hydrophobic interactions may contribute to the overall stability of the stacking and find a marked difference in the role of hydrophobic forces as compared with electrostatic forces in determining the stability of the stacked nucleosome system.