252 resultados para number-resolved master equation
Resumo:
The simple two dimensional C-13-satellite J/D-resolved experiments have been proposed for the visualization of enantiomers, extraction of homo- and hetero-nuclear residual dipolar couplings and also H-1 chemical shift differences between the enantiomers in the anisotropic medium. The significant advantages of the techniques are in the determination of scalar couplings of bigger organic molecules. The scalar couplings specific to a second abundant spin such as F-19 can be selectively extracted from the severely overlapped spectrum. The methodologies are demonstrated on a chiral molecule aligned in the chiral liquid crystal medium and two different organic molecules in the isotropic solutions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Resumo:
An integrodifferential formulation for the equation governing the Alfvén waves in inhomogeneous magnetic fields is shown to be similar to the polyvibrating equation of Mangeron. Exploiting this similarity, a time‐dependent solution for smooth initial conditions is constructed. The important feature of this solution is that it separates the parts giving the Alfvén wave oscillations of each layer of plasma and the interaction of these oscillations representing the phase mixing.
Resumo:
The various existing models for predicting the maximum stable drop diameterd max in turbulent stirred dispersions have been reviewed. Variations in the basic framework dictated by additional complexities such as the presence of drag reducing agents in the continuous phase, or viscoelasticity of the dispersed phase have been outlined. Drop breakage in the presence of surfactants in the continuous phase has also been analysed. Finally, the various approaches to obtaining expressions for the breakage and coalescence frequencies, needed to solve the population balance equation for the number density function of the dispersed phase droplets, have been discussed.
Resumo:
The prediction of the sound attenuation in lined ducts with sheared mean flow has been a topic of research for many years. This involves solving the sheared mean flow wave equation, satisfying the relevant boundary condition. As far as the authors' knowledge goes, this has always been done using numerical techniques. Here, an analytical solution is presented for the wave propagation in two-dimensional rectangular lined ducts with laminar mean flow. The effect of laminar mean flow is studied for both the downstream and the upstream wave propagation. The attenuation values predicted for the laminar mean flow case are compared with those for the case of uniform mean flow. Analytical expressions are derived for the transfer matrices.
Resumo:
An implicit sub-grid scale model for large eddy simulation is presented by utilising the concept of a relaxation system for one dimensional Burgers' equation in a novel way. The Burgers' equation is solved for three different unsteady flow situations by varying the ratio of relaxation parameter (epsilon) to time step. The coarse mesh results obtained with a relaxation scheme are compared with the filtered DNS solution of the same problem on a fine mesh using a fourth-order CWENO discretisation in space and third-order TVD Runge-Kutta discretisation in time. The numerical solutions obtained through the relaxation system have the same order of accuracy in space and time and they closely match with the filtered DNS solutions.
Resumo:
The initial boundary value problem for the Burgers equation in the domain x greater-or-equal, slanted 0, t > 0 with flux boundary condition at x = 0 has been solved exactly. The behaviour of the solution as t tends to infinity is studied and the “asymptotic profile at infinity” is obtained. In addition, the uniqueness of the solution of the initial boundary value problem is proved and its inviscid limit as var epsilon → 0 is obtained.
Resumo:
The nonaxisymmetric unsteady motion produced by a buoyancy-induced cross-flow of an electrically conducting fluid over an infinite rotating disk in a vertical plane and in the presence of an applied magnetic field normal to the disk has been studied. Both constant wall and constant heat flux conditions have been considered. It has been found that if the angular velocity of the disk and the applied magnetic field squared vary inversely as a linear function of time (i.e. as (1??t*)?1, the governing Navier-Stokes equation and the energy equation admit a locally self-similar solution. The resulting set of ordinary differential equations has been solved using a shooting method with a generalized Newton's correction procedure for guessed boundary conditions. It is observed that in a certain region near the disk the buoyancy induced cross-flow dominates the primary von Karman flow. The shear stresses induced by the cross-flow are found to be more than these of the primary flow and they increase with magnetic parameter or the parameter ? characterizing the unsteadiness. The velocity profiles in the x- and y-directions for the primary flow at any two values of the unsteady parameter ? cross each other towards the edge of the boundary layer. The heat transfer increases with the Prandtl number but reduces with the magnetic parameter.
Resumo:
We study large-scale kinematic dynamo action due to turbulence in the presence of a linear shear flow in the low-conductivity limit. Our treatment is non-perturbative in the shear strength and makes systematic use of both the shearing coordinate transformation and the Galilean invariance of the linear shear flow. The velocity fluctuations are assumed to have low magnetic Reynolds number (Re-m), but could have arbitrary fluid Reynolds number. The equation for the magnetic fluctuations is expanded perturbatively in the small quantity, Re-m. Our principal results are as follows: (i) the magnetic fluctuations are determined to the lowest order in Rem by explicit calculation of the resistive Green's function for the linear shear flow; (ii) the mean electromotive force is then calculated and an integro-differential equation is derived for the time evolution of the mean magnetic field. In this equation, velocity fluctuations contribute to two different kinds of terms, the 'C' and 'D' terms, respectively, in which first and second spatial derivatives of the mean magnetic field, respectively, appear inside the space-time integrals; (iii) the contribution of the D term is such that its contribution to the time evolution of the cross-shear components of the mean field does not depend on any other components except itself. Therefore, to the lowest order in Re-m, but to all orders in the shear strength, the D term cannot give rise to a shear-current-assisted dynamo effect; (iv) casting the integro-differential equation in Fourier space, we show that the normal modes of the theory are a set of shearing waves, labelled by their sheared wavevectors; (v) the integral kernels are expressed in terms of the velocity-spectrum tensor, which is the fundamental dynamical quantity that needs to be specified to complete the integro-differential equation description of the time evolution of the mean magnetic field; (vi) the C term couples different components of the mean magnetic field, so they can, in principle, give rise to a shear-current-type effect. We discuss the application to a slowly varying magnetic field, where it can be shown that forced non-helical velocity dynamics at low fluid Reynolds number does not result in a shear-current-assisted dynamo effect.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
We study the photon-number distribution in squeezed states of a single-mode radiation field. A U(l)-invariant squeezing criterion is compared and contrasted with a more restrictive criterion, with the help of suggestive geometric representations. The U(l) invariance of the photon-number distribution in a squeezed coherent state, with arbitrary complex squeeze and displacement parameters, is explicitly demonstrated. The behavior of the photon-number distribution for a representative value of the displacement and various values of the squeeze parameter is numerically investigated. A new kind of giant oscillation riding as an envelope over more rapid oscillations in this distribution is demonstrated.
Resumo:
We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex spin-singlet pair amplitude psi(ij) equivalent to psi(m) = Delta(m) exp(i phi(m)), where i and j are nearest-neighbor sites of the square planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site located at the center of the bond between i and j. The system is modeled as a weakly coupled stack of such planes. We hypothesize a simple form FDelta, phi] = Sigma(m)A Delta(2)(m) + (B/2)Delta(4)(m)] + C Sigma(< mn >) Delta(m) Delta(n) cos(phi(m) - phi(n)) for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C are determined from comparison with experiments. A combination of analytic approximations, numerical minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed functional for specific choices of A, B, and C as functions of hole density x and temperature T. There can be a rapid crossover of
Resumo:
The mechanical properties of composites of polymethylmethacrylate (PMMA) with two-dimensional graphene-like boron nitride (BN) have been investigated to explore the dependence of the properties on the number of BN layers. This study demonstrates that significantly improved mechanical properties are exhibited by the composite with the fewest number of BN layers. Thus, with incorporation of three BN layers, the hardness and elastic modulus of the composite showed an increase of 125% and 130%, respectively, relative to pure PMMA. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new formula for the solution of the general Abel Integral equation is derived, and an important special case is checked with the known result.