205 resultados para mine optimization
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.
Resumo:
The technological world has attained a new dimension with the advent of miniaturization and a major breakthrough has evolved in the form of moems, technically more advanced than mems. This breakthrough has paved way for the scientists to research and conceive their innovation. This paper presents a mathematical analysis of the wave propagation along the non-uniform waveguide with refractive index varying along the z axis implemented on the cantilever beam of MZI based moem accelerometer. Secondly the studies on the wave bends with minimum power loss focusing on two main aspects of bend angle and curvature angle is also presented.
Resumo:
Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi‐one‐dimensional nonreacting flow in the supersonic nozzle of CO2–N2–H2O and CO2–N2–He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small‐signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed.
Resumo:
We present a method for obtaining conjugate, conjoined shapes and tilings in the context of the design of structures using topology optimization. Optimal material distribution is achieved in topology optimization by setting up a selection field in the design domain to determine the presence/absence of material there. We generalize this approach in this paper by presenting a paradigm in which the material left out by the selection field is also utilised. We obtain conjugate shapes when the region chosen and the region left-out are solutions for two problems, each with a different functionality. On the other hand, if the left-out region is connected to the selected region in some pre-determined fashion for achieving a single functionality, then we get conjoined shapes. The utilization of the left-out material, gives the notion of material economy in both cases. Thus, material wastage is avoided in the practical realization of these designs using many manufacturing techniques. This is in contrast to the wastage of left-out material during manufacture of traditional topology-optimized designs. We illustrate such shapes in the case of stiff structures and compliant mechanisms. When such designs are suitably made on domains of the unit cell of a tiling, this leads to the formation of new tilings which are functionally useful. Such shapes are not only useful for their functionality and economy of material and manufacturing, but also for their aesthetic value.
Resumo:
Present day power systems are growing in size and complexity of operation with inter connections to neighboring systems, introduction of large generating units, EHV 400/765 kV AC transmission systems, HVDC systems and more sophisticated control devices such as FACTS. For planning and operational studies, it requires suitable modeling of all components in the power system, as the number of HVDC systems and FACTS devices of different type are incorporated in the system. This paper presents reactive power optimization with three objectives to minimize the sum of the squares of the voltage deviations (ve) of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (¿L2), and also the system real power loss (Ploss) minimization. The proposed methods have been tested on typical sample system. Results for Indian 96-bus equivalent system including HVDC terminal and UPFC under normal and contingency conditions are presented.
Resumo:
In this work, we propose an approach for reducing radiated noise from `light' fluid-loaded structures, such as, for example, vibrating structures in air. In this approach, we optimize the structure so as to minimize the dynamic compliance (defined as the input power) of the structure. We show that minimizing the dynamic compliance results in substantial reductions in the radiated sound power from the structure. The main advantage of this approach is that the redesign to minimize the dynamic compliance moves the natural frequencies of the structure away from the driving frequency thereby reducing the vibration levels of the structure, which in turn results in a reduction in the radiated sound power as an indirect benefit. Thus, the need for an acoustic and the associated sensitivity analysis is completely bypassed (although, in this work, we do carry out an acoustic analysis to demonstrate the reduction in sound power levels), making the strategy efficient compared to existing strategies in the literature which try to minimize some measure of noise directly. We show the effectiveness of the proposed approach by means of several examples involving both topology and stiffener optimization, for vibrating beam, plate and shell-type structures.
Resumo:
This study presents development of a computational fluid dynamic (CFD) model to predict unsteady, two-dimensional temperature, moisture and velocity distributions inside a novel, biomass-fired, natural convection-type agricultural dryer. Results show that in initial stages of drying, when material surface is wet and moisture is easily available, moisture removal rate from surface depends upon the condition of drying air. Subsequently, material surface becomes dry and moisture removal rate is driven by diffusion of moisture from inside to the material surface. An optimum 9-tray configuration is found to be more efficient than for the same mass of material and volume of dryer. A new configuration of dryer, mainly to explore its potential to increasing uniformity in drying across all trays, is also analyzed. This configuration involves diverting a portion of hot air before it enters over the first tray and is supplied directly at an intermediate location in the dryer. Uniformity in drying across trays has increased for the kind of material simulated.
Resumo:
This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.
Resumo:
Ionic polymer-metal composites are soft artificial muscle-like bending actuators, which can work efficiently in wet environments such as water. Therefore, there is significant motivation for research on the development and design analysis of ionic polymer-metal composite based biomimetic underwater propulsion systems. Among aquatic animals, fishes are efficient swimmers with advantages such as high maneuverability, high cruising speed, noiseless propulsion, and efficient stabilization. Fish swimming mechanisms provide biomimetic inspiration for underwater propulsor design. Fish locomotion can be broadly classified into body and/or caudal fin propulsion and median and/or paired pectoral fin propulsion. In this article, the paired pectoral fin-based oscillatory propulsion using ionic polymer-metal composite for aquatic propulsor applications is studied. Beam theory and the concept of hydrodynamic function are used to describe the interaction between the beam and water. Furthermore, a quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to obtain hydrodynamic performance of the ionic polymer-metal composite propulsor. Dynamic characteristics of ionic polymer-metal composite fin are analyzed using numerical simulations. It is shown that the use of optimization methods can lead to significant improvement in performance of the ionic polymer-metal composite fin.
Resumo:
Accurate estimation of mass transport parameters is necessary for overall design and evaluation processes of the waste disposal facilities. The mass transport parameters, such as effective diffusion coefficient, retardation factor and diffusion accessible porosity, are estimated from observed diffusion data by inverse analysis. Recently, particle swarm optimization (PSO) algorithm has been used to develop inverse model for estimating these parameters that alleviated existing limitations in the inverse analysis. However, PSO solver yields different solutions in successive runs because of the stochastic nature of the algorithm and also because of the presence of multiple optimum solutions. Thus the estimated mean solution from independent runs is significantly different from the best solution. In this paper, two variants of the PSO algorithms are proposed to improve the performance of the inverse analysis. The proposed algorithms use perturbation equation for the gbest particle to gain information around gbest region on the search space and catfish particles in alternative iterations to improve exploration capabilities. Performance comparison of developed solvers on synthetic test data for two different diffusion problems reveals that one of the proposed solvers, CPPSO, significantly improves overall performance with improved best, worst and mean fitness values. The developed solver is further used to estimate transport parameters from 12 sets of experimentally observed diffusion data obtained from three diffusion problems and compared with published values from the literature. The proposed solver is quick, simple and robust on different diffusion problems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving the clock speed, reducing the energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires having high load capacitance which leads to delay in execution and significantly high energy consumption. Inter-cluster communication also introduces many short idle cycles, thereby significantly increasing the overall leakage energy consumption in the functional units. The trend towards miniaturization of devices (and associated reduction in threshold voltage) makes energy consumption in interconnects and functional units even worse, and limits the usability of clustered architectures in smaller technologies. However, technological advancements now permit the design of interconnects and functional units with varying performance and power modes. In this paper, we propose scheduling algorithms that aggregate the scheduling slack of instructions and communication slack of data values to exploit the low-power modes of functional units and interconnects. Finally, we present a synergistic combination of these algorithms that simultaneously saves energy in functional units and interconnects to improves the usability of clustered architectures by achieving better overall energy-performance trade-offs. Even with conservative estimates of the contribution of the functional units and interconnects to the overall processor energy consumption, the proposed combined scheme obtains on average 8% and 10% improvement in overall energy-delay product with 3.5% and 2% performance degradation for a 2-clustered and a 4-clustered machine, respectively. We present a detailed experimental evaluation of the proposed schemes. Our test bed uses the Trimaran compiler infrastructure. (C) 2012 Elsevier Inc. All rights reserved.